Latest results from NEMO-3 & Status of SuperNEMO

Pawel Guzowski

The University of Manchester

on behalf of the NEMO collaboration

supernemo

collaboration

EPS HEP 13 20 July 2013

- ονββ phenomenology
- NEMO experimental technique
- Latest results from NEMO-3
- Status of SuperNEMO construction

ovββ phenomenology

ovββ mechanisms have different kinematic signatures

- Electron energy spectrum
- Angles between electrons

ovββ phenomenology

- $< m_v > -$ effective v_e mass
- G_{ov} phase space factor, well known
- Nuclear matrix elements M_{ov} currently biggest source of theoretical uncertainty
 - Large variations between nuclear models
- For best sensitivity, want large G & M
- Want large Q for better background rejection
- NEMO allows mixing & matching sources

$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) |M_{0\nu}|^2 \frac{\langle m_{\nu} \rangle^2}{m_e^2}$$

(Majorana mechanism)

MANCHESTER

Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

Experimental technique

- Calorimeters provide E, t measurements
- Tracker used vertexing, charge ID, angles
- PID: e⁻, γ, e⁺, α
- Knowledge of full event topology allows disentangling decay mechanisms
- All backgrounds determined experimentally in situ

NEMO-3

- Location 4800 m.w.e. underground lab
- Data taking Feb 2003 to Jan 2011
- Source
 - 20 sectors
 - 10kg, 20m², ~60mg/cm²
 - 7kg ¹⁰⁰Mo, 1kg ⁸²Se
 - ¹¹⁶Cd, ¹⁵⁰Nd, ⁴⁸Ca, ⁹⁶Zr, ¹³⁰Te
- Tracker
 - Drift wire chamber in Geiger mode
 - 9 layers/side, 6180 cells
 - He, 4% ethyl alcohol, 1% Ar, 0.1% H2O
 - 25G magnetic field
- Calorimetry
 - 1940 plastic scintillator blocks
 - 3", 5" low-radioactivity PMTs

$2\nu\beta\beta$ results

 $[2.88 \pm 0.04 \text{ (stat)} \pm 0.16 \text{ (syst)}] \times 10^{19} \text{ y}$

Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

MANCHESTER 1824 The University of Manchester

$2\nu\beta\beta$ results

Consistent with Phase I (PRL **95** 182302 (2005))

Publication later this year

Phase I: data until Sep 2004; Phase II: data from Oct 2004

Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

collaboratio

MANCHESTER 1824 The University of Manchester

NMEs used:		
[1] PRC 75 051303 (2007)	[2] PRC 76 024315 (2007)	[3] PRC 77 045503 (2008)
[4] PRC 79 044301 (2009)	[5] PRC 82 064310 (2010)	[6] PRL 100 052503 (2008)

From NEMO-3 to SuperNEMO

- Planar, modular successor of NEMO-3
 - More than an order of magnitude lower backgrounds
- Demonstrator module under construction, data taking from 2015
 - Prove that zero background is achievable
 - A further 19 modules to be made later
- Extremely low background environment needed also in construction

NEMO-3		SuperNEMO	Submodule	Submodule Source and X 20
¹⁰⁰ Mo, ⁸² Se (¹⁵⁰ Nd, ¹³⁰ Te, ¹¹⁶ Cd, ⁹⁶ Zr, ⁴⁸ Ca)	Isotopes	⁸² Se (¹⁵⁰ Nd, ⁴⁸ Ca)		calibration
10	Mass (kg)	100—200 (<i>demo: 7</i>)		
²⁰⁸ Tl: ~100 ²¹⁴ Bi: <300	Source contamination (µBq/kg)	²⁰⁸ Tl: <2 ²¹⁴ Bi: <10	4 8	Source 2
5	Radon level (mBq/m ³)	<0.15	2 1 1 1	
8%	Energy resolution (FWHM at 3MeV)	4%		
1	T ^{1/2} sensitivity (10 ²⁴ y)	100 (demo: 6.6)	Submodu	le om
300—900	<m<sub>v> sensitivity (meV)</m<sub>	40—100 (<i>demo: 200—400</i>)	tracker ← 2 m (assembled, ~0.5m b	etween source and calorimeter)

The University of Manchester

Source production

collaboration

- 5.5 kg ⁸²Se produced
- 'BiPo' detector operating at Canfranc lab, measuring ²¹⁴Bi and ²⁰⁸Tl contamination levels in the source foil

 $-\beta$ - α delayed coincidence

EPS HEP 2013

Calorimetry

- Demonstrated $\Delta E/E < 8\%$ for 1 MeV electrons (equivalent to 4% at Q=3MeV)
- Final design: Hamamatsu 8" PMTs, 256 x 256 x 150 mm³ scintillator blocks

Tracker production

- Tracker construction under way
 - Robot used to make wire cells
 - Cassettes of 18 cells at a time
- One out of the four corners of the frame has been built
 - Optical modules have been attached
 - Currently undergoing radon emanation measurements

- NEMO-3 has produced a unique spectrum of results on $0\nu\beta\beta$ and $2\nu\beta\beta$
 - World leading results on seven isotopes
 - Unique capability of investigating different models
 Currently producing publications of final results
- Full production of the first SuperNEMO module is currently ongoing
 - Demonstrate that zero background is achievable
- Complete SuperNEMO will be sensitive to $T_{1/2} \sim 10^{26} \, y$

Thank You

MANCHESTER 1824 The University of Manchester Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

BACKUP SLIDES

MANCHESTER 1824 The University of Manchester Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

Half lives (MM)

MANCHESTER

The University of Manchester

NEMO Collaboration

- 12 countries, 27 institutions
- Experiments located in 10 . Laboratoire Souterrain de Paris *Modane* (LSM) FRANCE ITALIE Lyon Modane Toulouse 4800 mwe **Altitudes** 1263 1298 1228 m m m 6210 Distances 12 868 0 m m m

Backgrounds

Internal background Impurities in the source foil, ²⁰⁸Tl, ²¹⁴Bi

beta + Compton

External backgrounds Impurities in detector materials

Radon background (²¹⁴Bi) Deposits on surfaces within the detector

+ irreducible $2\nu\beta\beta$ background

NEMO-3 shielding

- Gamma:
 - 18cm thick iron wall
- Neutron:
 - 30cm boronated water as outside wall
 - 40cm wood on top/bottom
- Radon:
 - Charcoal trap used from Sep 2004 onwards
 - Separates two data acquisition periods: Phase I (until Sep 2004) and Phase II (from Oct 2004)

NEMO-3 sources

T. west		- NA - 34m
	1	

Isotope	Mass (g)
¹⁰⁰ Mo	6,914
⁸² Se	932
¹³⁰ Te	454
¹¹⁶ Cd	405
¹⁵⁰ Nd	37
⁹⁶ Zr	9.4
⁴⁸ Ca	7
natTe	491
natCu	621

$ov\beta\beta$ search results

Non Maiorana-ma	Majorana-mass-						
1 ·	100	Phase I+II	Phase I				
mechanism		$T_{1/2}$ (ονββ)	T1/2(0vββ) (years)				
results		(years)	n = 1	n = 2	n =3	n = 7	
$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}(Q_{\beta\beta}^5, Z) \left M_{0\nu} \right ^2 \mu^2$	¹⁰⁰ Mo	> 5.7 x 10 ²³ λ < 1.4 x 10 ⁻⁶	> 2.7 x 10^{22} g _{ee} < (0.4 - 1.8) x 10^{-4}	> 1.7 x 10 ²²	> 1 x 10 ²²	> 7 x 10 ¹⁹	
$\mu = \lambda$ (RHC); g _{ee} (Majoron)	⁸² Se	> 2.4 x 10^{23} λ < 2 x 10^{-6}	> 1.5 x 10^{22} g _{ee} < (0.7 - 1.9) x 10^{-4}	> 6 x 10 ²¹	> 3.1 x 10 ²²	> 5 x 10 ²⁰	
Majoron emis d d d d d d d d d d d d d	sion	er. d d d d d d	$ \begin{array}{c} 250 \\ 250 \\ 150 \\ 100 \\ 50 \\ 0 \\ 500 \\ 1000$	$2\beta \chi \chi 2\beta \chi n=$ n=3 $500 \ 2000 \ 250$ En	2β0ν 1 		
MANCHESTER Latest results from	NEMO-3&	Status of SuperN	IEMO - P Guzowski	EPS HE	P 2013	22	

The University of Manchester

Latest results from NEMO-3 & Status of SuperNEMO - P Guzowski

EPS HEP 2013

SuperNEMO module

- $4 \times 3.7 \text{ m}^2$ source foil (~40 mg/cm²)
- ~500 calorimeter modules
- ~2000 tracker cells
- 20 tons

MANCHESTER

The University of Manchester

 Background less than 10⁻⁴ events/ keV/kg/year

EPS HEP 2013

SuperNEMO schedule

		2013	2014	2015	2016	2017	2018	2019	2020	2021
--	--	------	------	------	------	------	------	------	------	------

Demonstrator module construction and commissioning
Demonstrator operation: Prove low background is achievable $T_{1/2}$ sensitivity ~ 6.6 x 10 ²⁴ years
Construction & operation of remaining 19 modules $T_{1/2}$ sensitivity ~ 10 ²⁶ years (100 kg, 5 years)

Tracker production

•

- 2 x 9 wire cells per cassette
 - 112 cassettes per module
- 1 cassette per day at peak production