

Higgs Studies at D0 and the Tevatron

Ken Herner for the CDF and D0 Collaborations 18 July 2013

Outline

- Tevatron and LHC Complementarity
- Overview of $H \rightarrow b\bar{b}$ analyses
- Tevatron cross section and coupling measurements
- D0 spin and parity constraints in bb channels

Tevatron-LHC Complementarity

2012 was a momentous year– Discovery of a new boson with mass
125 GeV at the LHC in 4 lepton and γγ final states consistent with the SM Higgs; 3σ in bb final states at the Tevatron, compatible with LHC
The name of the game now: Probe new particle's properties

The Tevatron

- 1.96 TeV pp collider
- Integrated Luminosities up to 10 fb⁻¹/exp.

$VH \rightarrow Vb\bar{b}$ Analyses

- ZH → Ilbb 2 leptons + 2 b-jets
 Fully reconstructed final state
- Modeling of the Z+jets background; rejection of the tt background
- WH \rightarrow lvbb 1 lepton + MET + 2 b-jets
- Dominant backgrounds: W+jets, top
- Multijet backgrounds challenging

- ZH → vvbb MET + 2 b-jets (contribution from WH also)
- Accurately model and reject multijet background

Keys to Success in bb Searches

Keys to Success in bb Searches

- b-tagging
- Multivariate techniques
 - techniques to discriminate against single backgrounds or against all
 - often chained together

Tevatron VH \rightarrow bb Results

Measured $(\sigma_{WH} + \sigma_{ZH}) \times B(H \rightarrow b\overline{b})$: 0.19 ± 0.09 pb SM prediction: 0.12 ± 0.01 pb

Tevatron + LHC Combination would provide best cross section measurement, and firmly establish H→bb before 2015 LHC run ^{18 Jul 2013}

Tevatron Combination

- Combine all search channels from D0 and CDF
 - 17 distinct analyses, over 100
 subchannels (WW, ZZ, ττ, γγ decays)
 - Good agreement over many orders of magnitude
- Bayesian and CL_s methods

Tevatron Cross Sections

18 Jul 2013

Coupling Measurements

- Fix mass at 125, perform best fit to all x-secs/branching fractions
- Scale all fermion couplings by κ_{F} and all boson couplings by κ_{V}

Need to preserve unitarity in branching fractions

• Also compare κ_w and κ_z (custodial sym.)

Some examples:
$$\Gamma_{b\bar{b}}, \Gamma_{c\bar{c}}, \Gamma_{\tau\tau} \propto \kappa_f^2$$

 $\Gamma_{WW} \propto R^2 \kappa_V^2, R = \kappa_W / \kappa_Z$
 $\Gamma_{ZZ} \propto \kappa_V^2$
 $\Gamma_{gg} \propto (0.95 \kappa_f^2 + 0.05 \kappa_V^2)$
 $\Gamma_{\gamma\gamma} \propto (1.28 \kappa_V - 0.28 \kappa_f)^2$

1D Coupling Measurements 💮 题

$$\theta_{WZ} = \operatorname{Tan}^{-1}(\kappa_Z / \kappa_W)$$
$$\kappa_W / \kappa_Z = 1.24^{+2.34}_{-0.42}$$

 κ_W, κ_Z = coupling ratios to SM for W and Z

Testing Spin and Parity

- Standard Model predicts $J^P = 0^+$; 2^+ , 0^- also possible
- LHC tests confirm 0⁺ at 3σ level in combined bosonic final states
- Tevatron has sensitivity in bb final states
 - We need a consistent picture in **all** expected decay modes!
- Visible mass of Vbb system very sensitive to J^P assignment (e.g. Ellis, Hwang, Sanz, You, JHEP **1211**, 134 [2012])

Testing Spin and Parity

- Standard Model predicts $J^P = 0^+$; 2^+ , 0^- also possible
- LHC tests confirm 0⁺ at 3σ level in combined bosonic final states
- Tevatron has sensitivity in bb final states
 - We need a consistent picture in **all** expected decay modes!
- Visible mail (e.g. Ellis, Today's results only cover 0⁺ vs. 2⁺
 O⁻ vs. 0⁺ studies are ongoing

Generating signals

- Generate 2⁺ signal with MADGRAPH5; interfaced to PYTHIA for showering
 - Use RS graviton model, initial normalization to SM xsec x Br
 - Note: no generic Spin-2 model
 - Only considering VH processes (no e.g. gg or VBF)
- MADGRAPH 0⁺ VH checked against PYTHIA VH; good agreement
- Observe similar separation to that predicted

Additional Discrimination

18

• Take advantage of known mass

vvbb, Ilbb: create high/low purity regions using Mbb

- Ivbb uses MVA output to make HP/LP regions
- Separate channels in statistical analysis

Final Variables

Tightest HP b-tag channel per analysis shown

Results

• Use CL_s to quantify model preference, LLR as test statistic - H1: $J^P = 2^+ + BG$ $IIP = 21 \circ \sigma (I(II1)/I(II0))$

$$LLR = -2\log(L(H1)/L(H0))$$

- Compute for 2 different signal scale factors on SM $\sigma \times Br$ (bb)
 - 1.00 (SM)

- H0: J^P = 0⁺ + BG

- 1.23 (D0 measured rate)

Results

• Use CL_s to quantify model preference, LLR as test statistic

$$LLR = -2\log(L(H1)/L(H0))$$

- Compute for 2 different signal scale factors on SM $\sigma \times Br$ (bb)
 - 1.00 (SM; shown)

- H1: J^P = 2⁺ + BG

- H0: J^P = 0⁺ + BG

- 1.23 (D0 measured rate)

Results

- $CL_s = CL_{H1} / CL_{H0}$
- $CL_x = P(LLR \ge LLR^{obs} | x)$
- Interpret 1-CL_s as C.L. for exclusion of 2⁺ in favor of 0⁺
- Exclude 2⁺ model at > 99.2% C.L.
- Expected exclusion is 3.1σ (µ=1.0)

	Combined Result
1–CL _s Exp. (μ=1.00)	0.9995
1 – CL _s Obs. (µ=1.00)	0.992
1–CL _s Exp. (μ=1.23)	0.9999
1 – CL _s Obs. (μ=1.23)	0.999

Signal Admixtures

- Allow possibility of both a 2⁺ and 0⁺ signal in data
 - Vary 2^+ fraction f_{2+} from 0 to 1
 - H1: $\mu \times (\sigma \bullet Br(->bb))_{SM} \times [2^+ \times f_{2+} + 0^+ \times (1 f_{2+})] + Background$
 - H0: $\mu \times (\sigma \bullet Br(->bb))_{SM} \times O^+$ (i.e. pure O⁺) + Background
- Fix μ to 1.00 or 1.23, compute LLR, CLs, etc.

Summary

- A broadly consistent Higgs boson picture is forming; Tevatron provides complementary info in bb channels
- All final Tevatron Higgs combinations accepted in Phys. Rev. D
- Cross section and coupling measurements consistent with the SM predictions
- D0 spin and parity tests in bb final states favor J^P=0⁺; reject J^P=2⁺ (graviton-like couplings) at >99.2% C.L.

Exclude f₂₊> 0.42 at 95% C.L.

 Still to come: J^P=0⁻ tests, combination with CDF

Tevatron Run II, $L \le 10 \text{ fb}^{-1}$

Backup

Final Tevatron Publications

DØ	Luminosity (fb ⁻¹)	M_H (GeV)	Reference		
$WH \rightarrow \ell \nu bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121804 (2012)		
			and Acc by PRD arXiv:1301.6122		
$ZH \rightarrow \ell\ell b\bar{b}$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)		
			and Acc by PRD arXiv:1303.3276		
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.5	100 - 150	Phys. Lett. B 716, 285 (2012)		
$H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$	9.7	100 - 200	Acc by PRD arXiv:1301.1243		
$H + X \to WW \to \mu^{\pm} \tau_h^{\mp} + \le 1$ jet	7.3	155 - 200	Phys. Lett. B 714, 237 (2012)		
$H \rightarrow W^+W^- \rightarrow \ell \nu q' \bar{q}$	9.7	100 - 200	Acc by PRD arXiv:1301.6122		
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	100 - 200	Acc by PRD arXiv:1302.5723		
$VH \rightarrow e^{\pm}\mu^{\pm} + X$	9.7	100 - 200	Acc by PRD arXiv:1302.5723		
$VH \to \ell \nu q' \bar{q} q' \bar{q}$	9.7	100 - 200	Acc by PRD arXiv:1301.6122		
$VH \to \tau_h \tau_h \mu + X$	8.6	100 - 150	Acc by PRD arXiv:1302.5723		
$H + X \to \ell \tau_h j j$	9.7	105 - 150	Acc by PRD arXiv:1211.6993		
$H \rightarrow \gamma \gamma$	9.7	100 - 150	Acc by PRD, arXiv:1301.5358		
CDF					
$WH \rightarrow \ell \nu bb$	9.45	90 - 150	Phys. Rev. Lett. 109, 111804 (2012)		
$ZH \rightarrow \ell\ell b\bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111803 (2012)		
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	9.45	90 - 150	Phys. Rev. Lett. 109, 111805 (2012)		
			and Phys. Rev. D 87, 052008 (2013)		
$H \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023		
$H \to WW \to e\tau_h \mu \tau_h$	9.7	130 - 200	Sub to PRD, arXiv: 1306.0023		
$VH \rightarrow ee\mu/\mu\mu e+X$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023		
$H \to \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)		
$H \rightarrow \gamma \gamma$	10.0	100 - 150	Phys. Lett. B 717, 173 (2012)		
$H \rightarrow ZZ \rightarrow llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012		
$t\bar{t}H ightarrow WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 (2012) 181802		
$VH \rightarrow jjb\bar{b}$	9.45	100 - 150	JHEP 1302 (2013) 004		

Final Tevatron Publications

DØ	Luminosity (fb^{-1})	M_H (GeV)	Reference			
$WH \to \ell \nu bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121804 (2012)			
7.11 ANT			and Acc by PRD arXiv:1301.6122			
$ZH \to \ell\ell bb$	9.7	90 - 150	Phys. Rev. Lett. 109, 121803 (2012)			
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$	0.5	100-150	and Acc by PRD arAiv:1303.3270 Phys. Lett. B 716, 285 (2012)			
$H \rightarrow W^+W^$		100 100	v:1301.1243			
$H + X \to WW$	D0 Comb	ination:	, 237 (2012)			
$H \rightarrow W^+W^$	$^{/+W^{-}}$ Acc. by PRD arXiv:1303.0823					
$VH ightarrow ee \mu/\mu\mu\epsilon$			v:1302.5723			
$VH \to e^{\pm}\mu^{\pm} + \lambda$			v:1302.5723			
$VH \to \ell \nu q' \bar{q} q' \bar{q}$	CDE Comb	aination	v:1301.6122			
$V H \rightarrow \tau_h \tau_h \mu +$	$VH \rightarrow \tau_h \tau_h \mu + CDF Combination:$					
$\frac{H + \lambda \to \ell \tau_h j j}{H}$	Acc. by PRD ar	(iv:1301				
$H \rightarrow \gamma \gamma$			iv:1301.5358			
CDF						
$W H \rightarrow \ell \nu b b$ $Z H \rightarrow \ell \ell \bar{\nu} \bar{b}$	Tevatron Combination					
$Z H \rightarrow \ell \ell 0 0$ $Z H \rightarrow \ell \bar{\ell} \bar{\ell} \bar{h}$			111805 (2012)			
$Z \Pi \rightarrow V V 0 0$	Acc. by PRD ar	Xiv:1303	3.6346			
$H \rightarrow W^+W^$			v: 1306.0023			
$H \to WW \to e^{-1}$			v: 1306.0023			
$VH \to ee\mu/\mu\mu e + X$	9.7	110 - 200	Sub to PRD, arXiv: 1306.0023			
$H \to \tau \tau$	6.0	100 - 150	Phys. Rev. Lett. 108, 181804 (2012)			
$H \to \gamma \gamma$	10.0	100 - 150	Phys. Lett. B 717, 173 (2012)			
$H \to ZZ \to llll$	9.7	120-200	Phys. Rev. D 86 (2012) 072012			
$t\bar{t}H \rightarrow WWb\bar{b}b\bar{b}$	9.45	100 - 150	Phys. Rev. Lett. 109 (2012) 181802			
$VH \rightarrow jjbb$	9.45	100 - 150	JHEP 1302 (2013) 004			

```
춯
```

Final D0 SM Combination

Final D0 SM Combination

Tevatron Sub-combinations

Tevatron Limits

Tevatron Cross Section Posteriors

TABLE VII: Measurements of the best-fit values of $R = \sigma \times \mathcal{B}/\text{SM}$ using the Bayesian method, for the combined SM, $H \to W^+W^-$, $H \to b\bar{b}$, $H \to \gamma\gamma$, and $H \to \tau^+\tau^-$ searches, for 115 GeV/ $c^2 \leq m_H \leq 140 \text{ GeV}/c^2$. The quoted uncertainties bound the smallest interval containing 68% of the integral of the posterior probability densities.

	115	120	125	130	135	140
$R_{\rm fit}({ m SM})$	$0.87^{+0.48}_{-0.45}$	$1.46\substack{+0.55\\-0.51}$	$1.48\substack{+0.58 \\ -0.60}$	$1.12\substack{+0.62\\-0.57}$	$1.07\substack{+0.60\\-0.57}$	$1.16\substack{+0.57\\-0.53}$
$R_{\rm fit}(H \to W^+W^-)$	$3.29^{+2.21}_{-1.89}$	$1.87^{+1.33}_{-1.36}$	$0.85_{-0.81}^{+0.88}$	$0.33_{-0.33}^{+0.78}$	$0.51_{-0.48}^{+0.52}$	$0.92^{+0.59}_{-0.54}$
$R_{ m fit}(H ightarrow b ar{b})$	$0.73_{-0.46}^{+0.46}$	$1.29_{-0.56}^{+0.59}$	$1.56\substack{+0.72\\-0.73}$	$1.84_{-0.88}^{+0.96}$	$2.61^{+1.21}_{-1.25}$	$3.21^{+1.64}_{-1.64}$
$R_{ m fit}(H o \gamma \gamma)$	$0.10\substack{+3.13\\-0.10}$	$5.03^{+3.03}_{-2.75}$	$6.13^{+3.25}_{-3.19}$	$3.05^{+2.76}_{-2.72}$	$0.00^{+4.10}_{-0.00}$	$2.89^{+3.38}_{-2.89}$
$R_{\rm fit}(H o au^+ au^-)$	$2.61^{+2.39}_{-2.26}$	$2.86^{+2.57}_{-2.08}$	$2.12^{+2.25}_{-2.12}$	$0^{+3.16}_{-0}$	$0.95\substack{+2.86 \\ -0.95}$	$2.46^{+2.40}_{-2.13}$

More on coupling measurements

From T. Junk:

Coupling Determination: Production Cross Sections

Scalings for:

Higgs searches in 4th generation models

 t, u_4, d_4

guy

mm

- New heavy generation of quarks
 - ggH coupling is multiplied by 3 compared to SM
 - Production is enhanced by 9
- OS dilepton, Ivjj(jj) searches can be recycled
 - For these channels in SM $\, gg \to H$ is the dominant SM signal
 - \rightarrow No need for dedicated BDT training within 4th gen context

Former publication: PRD 82, 011102 (2010), DO+CDF 4.8-5.2 fb-1 :

 $131 < m_H < 208$ GeV excluded ($125 < m_H < 227$ GeV expected sensitivity)

Fermiophobic Higgs searches

- Models where $H \rightarrow ff$ couplings do not occur
 - Also means no $gg \rightarrow H$ production
- So we consider channels with $H \to \!\!\gamma\gamma$, WW
 - $H \rightarrow \gamma \gamma$ (VH and VBF)
 - OS dilepton (VH and VBF)
 - SS dilepton (VH)
 - trilepton (VH)
- Benefits from SM search refinements
 - Employ same subchannels and BDT techniques
 - Retrain BDTs in channels where $aa \rightarrow H$ provides dominant signal in SM \boxtimes OS dilepton, $H \rightarrow \gamma\gamma$

exclusion @95%CL observed m_H<114 GeV expected m_H<117 GeV

Tevatron BSM Results

bb Diboson Combination

Measured value: 3.0 +/- 0.6 (stat.) +/- 0.7 (syst.) pb SM Value : 4.4 +/- 0.3 pb

LLR vs. 2+ Fraction

Suite of Higgs Analyses

- Traditionally analyses divided into "Low-mass" and "High-mass"
- Low-mass: associated production $VH \rightarrow Vb\overline{b}$
- High-mass: H→WW decays (mostly gg prod.; also VH, VBF)
- Also contributions in secondary (tau, γγ) channels

H->WW Analyses

- Signatures:
 - Two isolated high p_{τ} leptons, large \mathbb{E}_{τ} , small $\Delta \phi(II)$, small $\Delta R(II)$
- Use multiple MVAs to reject different backgrounds
 - Reduce $Z(+jets) \rightarrow II w/$ dedicated BDT
 - Use dedicated MVA to • separate samples into WW enriched and WW depleted

Events/0.04

10⁴

10³

10²

10

10⁻¹

regions

Comparison of Tev and LHC Methods

- Signal scaling
 - Tevatron: signals fixed in both hypotheses
 - 2+ normalization does vary when setting 95% C.L. upper limits
 - Exclude μ > 0.73 at 95% C.L. in this case
 - LHC: signals fixed to best fit values in each hypothesis (need not be equal)
- Systematic uncertainties
 - Tevatron varies systs. in pseudoexperiments
 - LHC does not vary systs. in PEs