

HEP 2013 Stockholm 18-24 July 2013

Multi-jet cross section ratios and determination of α_s in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV

Avto Kharchilava SUNY at Buffalo for the DØ Collaboration

University at Buffalo The State University of New York

Outline

- Introduction
- Measurement of multijet cross section ratios: $R_{3/2}, R_{\Delta\phi}, R_{\Delta R}$
- Determination of $\alpha_{\rm s}$
- Summary

Introduction

 Studies of multi-jet production in hadron collisions provide important tests of pQCD calculations

Measurement of ratios allow for improved precisions

- For instance, measurements of 3jet ($\sim \alpha_s^3$) over 2-jet ($\sim \alpha_s^2$) cross section ratios are sensitive to α_s
- Sensitivity to uncertainties in PDF are significantly reduced

Data, jet definition, comparison to theory

- All three analyses are based on 0.7 fb⁻¹ of Run II data
- Jets are identified with the DØ Run II midpoint cone algorithm
 R_{cone} = 0.7, p_T > p_{Tmin}, lyl < 2.4, R_{ii} > 2R_{cone}
- Jets are corrected for the calorimeter response, instrumental out-of-cone showering and pile-up effects
- These jet energy scale corrections are determined in-situ using γ+jet, Z → e⁺e⁻, di-jet and minimum bias collider data
 Energy calibration is known to 1.2 2.5% in 50 < p_T < 500 GeV
- Resulting calorimeter jets are corrected to the particle level jets using detailed simulations of the DØ detector
- Theoretical predictions from NLOJET++ (Z. Nagy, Phys. Rev. D 68 (2003) 094002) are corrected for non-perturbative effects derived from Pythia (various tunes) and Herwig simulations

Multi-jet cross section ratio R_{3/2}

- Calculate the ratio $R_{3/2} = \sigma(3-jet)/\sigma(2-jet)$
- Phys. Lett. B 720, 6 (2013)

- Measure R_{3/2}(p_{Tmax}, p_{Tmin})
 - Probes α_s at the p_{Tmax} scale. p_{Tmin} sets a "hardness" criterion for the 3rd jet

Data well described by theory for $p_{Tmin} = 50, 70, 90 \text{ GeV}$

Dijet azimuthal decorrelations $R_{\Delta \varphi}$

M. Wobisch et al., JHEP 1301 (2013) 172

$$R_{\Delta\phi} = \frac{\sigma_{dijet} (\Delta \phi < \Delta \phi_{max})}{\sigma_{dijet} (inclusive)}$$

Numerator is effectively a 3-jet quantity, due to $\Delta \phi_{max}$ requirement, but the 3rd jet is not explicitly required \rightarrow more inclusive quantity than R_{3/2}

- Measure $R_{\Delta\phi}(H_T, y^*, \Delta\phi_{max})$ in kinematic regions of y^* and $\Delta\phi_{max}$ $y^* = \frac{1}{2} |y_1 - y_2|$

 H_{T} is the total transverse momentum in the event

• Scale for α_s is set at $H_T/2$

Dijet azimuthal decorrelations $R_{\Delta\phi}$

Phys. Lett. B 721, 212 (2013)

Weaker H_T dependence at larger rapidity y^{*}

Dijet azimuthal decorrelations $R_{\Delta\phi}$

- Well described by theory for $\Delta \phi_{max} = 7\pi/8$, $5\pi/6$
- Large scale dependence for smaller $\Delta \phi_{max} = 3\pi/4$
 - Since larger 4-jet contribution

A new quantity $R_{\Delta R}$: angular correlations of jets

Average number of neighboring jets for an inclusive jets sample

$$R_{\Delta R}(p_T, \Delta R, p_{T\min}^{\text{nbr}}) = \frac{\sum_{i=1}^{N_{\text{jet}}(p_T)} N_{\text{nbr}}^{(i)}(\Delta R, p_{T\min}^{\text{nbr}})}{N_{\text{jet}}(p_T)}$$

• Require at least one nearby jet \rightarrow

- Depends on 3 variables
 - Inclusive jet $p_T \rightarrow$ sets scale for α_s
 - Distance ΔR to neighboring jet in the (y, ϕ) space
 - Neighbor jet p_T -nbr-min requirement

Angular correlations of jets $R_{\Delta R}$

Phys. Lett. B 718, 56 (2012)

 $R_{\Delta R}(p_T, \Delta R, p_{T-nbr-min})$ increases with p_T and with ΔR

Angular correlations of jets $R_{\Delta R}$

Theory describes data for $p_{T-nbr-min} = 50, 70, 90 \text{ GeV}$

$\alpha_{\rm s}({\rm p_T})$ and $\alpha_{\rm s}({\rm M_Z})$ from ${\rm R_{\Delta R}}$ data

Combine all data points with $p_{Tnbr-min} \ge 50, 70, 70 \text{ GeV}$ (all ΔR , all p_T)

$$\alpha_s(M_Z) = 0.1191^{+0.0048}_{-0.0071}$$

Sources of uncertainties	
Statistical	±0.0003
Experimental correlated	+0.0007 -0.0009
Non-perturb. corrections	+0.0002 -0.0001
MSTW2008NLO	+0.001 -0.0005
PDF set	+0.0 -0.0024
$\mu_{\rm R,F}$ variation	+0.0046 -0.0066

- $\alpha_{\rm s}({\rm p_T})$ follows RGE predictions
- For higher precision, need 2- and 3-jet calculations at NNLO 12

Summary

- Detailed tests of pQCD carried out in DØ by measuring multi-jet cross section ratios using $R_{3/2}$, $R_{\Delta\phi}$ and $R_{\Delta R}$ quantities
- $\alpha_{\rm s}$ has been precisely measured with reduced sensitivity to PDF
- Precisions are limited by pQCD calculations at higher orders

Backup

Multi-jet cross section ratio R_{3/2}

Examples of $R_{\Delta R}$ variable

$R_{\Delta R}$ PDF sensitivity

MSTW2008, CT10, NNPDFv2.1 all agree within 3%

 $R_{\Delta R}$ scale dependence

Small, 5 – 10%, scale dependence

$R_{\Delta R}$ non-perturbative corrections

Typically small corrections, \sim 3–5% at higher p_T

19