HEP 2013
Stockholm
18-24 July 2013

Multi-jet cross section ratios and determination of α_{s} in $p \bar{p}$ collisions at $\sqrt{ }{ }_{s}=1.96 \mathrm{TeV}$

Avto Kharchilava
SUNY at Buffalo for the DØ Collaboration

University at Buffalo The State University of New York

Outline

- Introduction
- Measurement of multijet cross section ratios: $R_{3 / 2}, R_{\Delta \phi}, R_{\Delta R}$
- Determination of α_{s}
- Summary

Tevatron at Fermilab

Introduction

- Studies of multi-jet production in hadron collisions provide important tests of pQCD calculations

- Measurement of ratios allow for improved precisions

- For instance, measurements of 3jet ($\sim \alpha_{s}{ }^{3}$) over 2-jet ($\sim \alpha_{s}{ }^{2}$) cross section ratios are sensitive to α_{s}
- Sensitivity to uncertainties in PDF are significantly reduced

Data, jet definition, comparison to theory

- All three analyses are based on $0.7 \mathrm{fb}^{-1}$ of Run II data
- Jets are identified with the DØ Run II midpoint cone algorithm
$-\mathrm{R}_{\text {cone }}=0.7, \mathrm{p}_{\mathrm{T}}>\mathrm{p}_{\mathrm{T} \text { min }}, \mathrm{yl}<2.4, \mathrm{R}_{\mathrm{ij}}>2 \mathrm{R}_{\text {cone }}$
- Jets are corrected for the calorimeter response, instrumental out-of-cone showering and pile-up effects
- These jet energy scale corrections are determined in-situ using $\gamma+j e t, Z \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$, di-jet and minimum bias collider data
- Energy calibration is known to $1.2-2.5 \%$ in $50<p_{T}<500 \mathrm{GeV}$
- Resulting calorimeter jets are corrected to the particle level jets using detailed simulations of the DØ detector
- Theoretical predictions from NLOJET++ (Z. Nagy, Phys. Rev. D 68 (2003) 094002) are corrected for non-perturbative effects derived from Pythia (various tunes) and Herwig simulations

Multi-jet cross section ratio $\mathrm{R}_{3 / 2}$

- Calculate the ratio $R_{3 / 2}=\sigma(3-j e t) / \sigma(2-j e t)$
- Measure $R_{3 / 2}\left(\mathrm{p}_{\mathrm{Tmax}}, \mathrm{p}_{\mathrm{T} \min }\right)$
- Probes α_{s} at the $\mathrm{p}_{T \max }$ scale. $\mathrm{p}_{T \min }$ sets a "hardness" criterion for the $3^{\text {rd }}$ jet

Data well described by theory for $\mathrm{p}_{\mathrm{T} \text { min }}=50,70,90 \mathrm{GeV}$

Dijet azimuthal decorrelations $\mathrm{R}_{\Delta \phi}$

$\mathrm{R}_{\Delta \phi}$: Fraction of all dijet events
with $\Delta \phi<\Delta \phi_{\max }$
M. Wobisch et al., JHEP 1301 (2013) 172

$$
R_{\Delta \phi}=\frac{\sigma_{\text {dijet }}\left(\Delta \phi<\Delta \phi_{\max }\right)}{\sigma_{\text {dijet }}(\text { inclusive })}
$$

Numerator is effectively a 3-jet quantity, due to $\Delta \phi_{\max }$ requirement, but the $3^{\text {rd }}$ jet is not explicitly required \rightarrow more inclusive quantity than $\mathrm{R}_{3 / 2}$

- Measure $\mathrm{R}_{\Delta \phi}\left(\mathrm{H}_{\mathrm{T}}, \mathrm{y}^{*}, \Delta \phi_{\max }\right)$ in kinematic regions of y^{*} and $\Delta \phi_{\max }$ $y^{*}=1 / 2 y_{1}-y_{2} \mid$
H_{T} is the total transverse momentum in the event
- Scale for α_{s} is set at $\mathrm{H}_{\mathrm{T}} / 2$

Dijet azimuthal decorrelations $\mathrm{R}_{\Delta \phi}$

Phys. Lett. B 721, 212 (2013)

Weaker H_{T} dependence at larger rapidity y^{\star}

Dijet azimuthal decorrelations $\mathrm{R}_{\Delta \phi}$

- Well described by theory for $\Delta \phi_{\max }=7 \pi / 8,5 \pi / 6$
- Large scale dependence for smaller $\Delta \phi_{\max }=3 \pi / 4$
- Since larger 4-jet contribution

A new quantity $R_{\Delta R}$: angular correlations of jets

- Average number of neighboring jets for an inclusive jets sample

$$
R_{\Delta R}\left(p_{T}, \Delta R, p_{T \min }^{\mathrm{nbr}}\right)=\frac{\sum_{i=1}^{N_{\mathrm{jet}}\left(p_{T}\right)} N_{\mathrm{nbr}}^{(i)}\left(\Delta R, p_{T \min }^{\mathrm{nbr}}\right)}{N_{\mathrm{jet}}\left(p_{T}\right)}
$$

- Require at least one nearby jet \rightarrow

- Depends on 3 variables
- Inclusive jet $p_{T} \rightarrow$ sets scale for α_{s}
- Distance ΔR to neighboring jet in the (y, ϕ) space
- Neighbor jet p_{T}-nbr-min requirement

Angular correlations of jets $R_{\Delta R}$

Phys. Lett. B 718, 56 (2012)

$R_{\Delta R}\left(p_{T}, \Delta R, p_{T-\text { nbr-min }}\right)$ increases with p_{T} and with ΔR

Angular correlations of jets $R_{\Delta R}$

Theory describes data for $\mathrm{p}_{\mathrm{T} \text {-nbr-min }}=50,70,90 \mathrm{GeV}$

$\alpha_{\mathrm{s}}\left(\mathrm{p}_{\mathrm{T}}\right)$ and $\alpha_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)$ from $\mathrm{R}_{\Delta \mathrm{R}}$ data

Combine all data points with $p_{\text {Tnbr-min }} \geq 50,70,70 \mathrm{GeV}$ (all ΔR, all p_{T})

- $\alpha_{\mathrm{s}}\left(\mathrm{p}_{\mathrm{T}}\right)$ follows RGE predictions
- For higher precision, need 2- and 3-jet calculations at NNLO

Summary

- Detailed tests of pQCD carried out in DØ by measuring multi-jet cross section ratios using $R_{3 / 2}$, $R_{\Delta \phi}$ and $R_{\Delta R}$ quantities
- α_{s} has been precisely measured with reduced sensitivity to PDF
- Precisions are limited by pQCD calculations at
 higher orders

Backup

Multi-jet cross section ratio $R_{3 / 2}$

Examples of $R_{\Delta R}$ variable

$R_{\Delta R}$ PDF sensitivity

MSTW2008, CT10, NNPDFv2.1 all agree within 3\%

$\mathrm{R}_{\Delta R}$ scale dependence

Small, 5 - 10\%, scale dependence

$\mathrm{R}_{\Delta R}$ non-perturbative corrections

Typically small corrections, $\sim 3-5 \%$ at higher p_{T}

