OBSERVATION OF D^0 MIXING AT CDF

Jonathan Lewis
Fermilab
18 July 2013
Neutral mesons can oscillate between matter and anti–matter

- Mass eigenstates ≠ flavor eigenstates

\[D^0 = \frac{\langle D_1 + D_2 \rangle}{\sqrt{2}} \quad \bar{D}^0 = \frac{\langle D_1 - D_2 \rangle}{\sqrt{2}} \]

- Time evolution

\[D_{1,2}(t) = D_{1,2}(0) e^{-t(\Gamma_{1,2} + iM_{1,2})} \]

- Mixing well established in K^0 (1962), B^0 (1987), and B_s^0 (CDF 2006) decays
 - Evidence for D^0 from Belle (2006), Babar and CDF(2007)
 - Observation by LHCb (2012)
Mixing Characteristics

- Two sources
 - Long-range intermediate states
 - Dominant
 - Large theoretical uncertainties
 - Short-range box diagram
 - Suppressed
 - No GIM suppression from heavy top quark
 - Possible enhancement by New Physics
- Charm mixing slow
 - $x, y \ll 1$
Mixing Signature

- Compare rate of wrong-sign $D^0 \rightarrow K^+ \pi^-$ decays to right-sign $D^0 \rightarrow K\pi^+$ decays
 - Tag flavor at production with $D^{*+} \rightarrow D^0 \pi^+$ decays
 - Wrong sign events can come from mixing or doubly Cabibbo-suppressed (DCS) decays
 - DCS decays are time independent

- Time evolution

$$ R(t) = R_D + \sqrt{R_D} y' t + \frac{x'^2 + y'^2}{4} t^2 $$

$$ x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi} $$
$$ y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi} $$

$\delta_{K\pi}$: strong phase difference between CF and DCS amplitudes
Data Sample

- Full CDF II data set
 - 9.6 pb\(^{-1}\) p\(\bar{p}\) at \(\sqrt{s}=1960\) GeV
- Heavy flavor hadronic decay trigger
 - Two opposite-charge tracks with \(p_T>2\) GeV/c, \(d_0>100\mu m\)

1.4T Solenoid

COT Drift Chamber
- \(\delta p_T/p_T^2 \approx 0.07\%\)
- PID from dE/dx with ~1.5\(\sigma\) K–\(\pi\) separation at \(p_T=2\) GeV

SVX Vertex Detector
- \(\delta d_0 \approx 25\mu m\)
- Beam spot rms 25\(\mu m\)

7/18/2013

Charm Meson Mixing at CDF
Reconstruct events with both RS and WS hypotheses.

Large background to WS decays from incorrect charge assignment in RS decays.
Reduce misassignment background

- Remove WS candidates consistent with RS hypothesis and vice versa
 - Removes 96% of background
 - 78% efficient for signal

CDF Run II preliminary, L=9.6 fb⁻¹

Wrong-sign Kπ mass [GeV/c²]

RS after WS cut

Charm Meson Mixing at CDF

7/18/2013
D* Reconstruction

- Standard method
 - Fit $\Delta m = m(K\pi\pi_{\text{tag}}) - m(K\pi) - m_{\pi}$
- Must account for D^0 and D^* backgrounds
 - Cutting on D^0 peak would include fake D mesons in D^* fit
 - In 10 bins of D^0 decay time, for RS and WS candidates, find the D^0 yield in 60 bins of Δm
 - Fit the resulting Δm distribution to get the D^* yields
Wrong-Sign Ratio

- From D^* yields, get measured ratio in each time bin

\[
R_i = \frac{N_i(D^{*+} \to [K^{+}\pi^-]\pi^+) + N_i(D^{-} \to [K^{-}\pi^+]\pi^-)}{N_i(D^{*+} \to [K^{-}\pi^+]\pi^+) + N_i(D^{-} \to [K^{+}\pi^-]\pi^-)}
\]
Must account for B decay component
- D^0 will have larger apparent lifetime
- Mixing sample is required to be consistent with prompt production, but some B contamination remains

\[
R_m(t) = \frac{N^{WS}(t) + N^{WS}_B(t)}{N^{RS}(t) + N^{RS}_B(t)}
\]
Use impact parameter of reconstructed D^0 mesons

Prompt production D^0 from PV

Secondary production D^0 from B decay
B Fraction

- Measured in RS data
- Fit to 4th order polynomial

CDF Run II preliminary, L=9.6 fb^{-1}

Data: RS D^0 \rightarrow K\pi
χ² fit vs. decay time

- Correct for B component using MC for D decay time distribution as a function of apparent decay time

\[\chi^2 = \sum_{i=1}^{20} \left[\frac{r_i - R_m(t_i)}{\sigma_i} \right]^2 + C_{f_B}(p) + C_{R_B}(h) \]

- 20 measured WS/RS points \(r_i \) with error \(\sigma_i \)
- Gaussian constraint on \(f_B \) parameters (p)
- Gaussian constraint on MC decay time distributions of \(D^* \) from B

\[R_m(t) = \frac{N^{WS}(t) + N^{WS}_B(t)}{N^{RS}(t) + N^{RS}_B(t)} = R(t) \left[1 + f^{RS}_B(t) \left(\frac{R_B(t)}{R(t)} - 1 \right) \right] \]

\[f^{RS}_B(t) = \frac{N^{RS}_B(t)}{N^{RS}(t) + N^{RS}_B(t)} \]

Fraction of RS \(D^* \) from B decays

\[R_B(t) = \frac{N^{WS}_B(t)}{N^{RS}_B(t)} \]

WS/RS ratio of non-prompt \(D^0 \)
Calculated by weighting \(R(t) \) with the decay-time distribution of secondary \(D^0 \) from MC
Mixing Fit Results

<table>
<thead>
<tr>
<th>Fit type</th>
<th>χ^2/ndf</th>
<th>Parameter</th>
<th>Fitted values $\times 10^{-3}$</th>
<th>Correlation coefficient R_D</th>
<th>y'</th>
<th>x'^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>16.91/17</td>
<td>R_D</td>
<td>3.51 ± 0.35</td>
<td>1</td>
<td>-0.967</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>y'</td>
<td>4.3 ± 4.3</td>
<td></td>
<td>1</td>
<td>-0.975</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x'^2</td>
<td>0.08 ± 0.18</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No-mixing</td>
<td>58.75/19</td>
<td>R_B</td>
<td>4.30 ± 0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Significance

- Bayesian probability contour
 - No mixing hypothesis excluded at 6.1\(\sigma\)
- Frequentist method using toy-MC in samples without
 - \(\Delta \chi^2\) difference exceeds observed in 6 of \(10^{10}\) trials
 - No-mixing case excluded at 6.1\(\sigma\)
CDF confirms observation of D^0 mixing at 6.1σ
- Parameters similar to other experiments
- Nature is giving up her charms, but without indication of new physics