Semi-Annihilating Scalar Dark Matter

Kristjan Kannike

Scuola Normale Superiore di Pisa, Italy NICPB, Estonia

EPS HEP, Stockholm, 2013

Geneviève Bélanger, K. K., Alexander Pukhov, Martti Raidal

< 口 > < 同

2 \mathbb{Z}_2 and Beyond

- Why is WIMP dark matter stable?
- The simplest symmetry parity \mathbb{Z}_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But also possible: \mathbb{Z}_3 , \mathbb{Z}_4 , ...

3 New Phenomena for \mathbb{Z}_N , N > 2

For several species of dark matter x_i:

• Semi-annihilation $x_i x_j \rightarrow x_k X$, d'Eramo & Thaler 1003.5912, Hambye 0811.0172, Hambye & Tytgat 0907.1007

■ Dark matter conversion $x_2x_2 \leftrightarrow x_1x_1$

Liu, Wu & Zhou 1101.4148, Bélanger & Park 1112.4491, Adulpravitchai, Batell & Pradler 1103.3053

Field ϕ with charge X_{ϕ} transforms under \mathbb{Z}_N as

$$\phi
ightarrow e^{i rac{\chi_{\phi}}{N} 2 \pi} \phi$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

- Addition modulo N
- Discrete charges X = 0, 1, ..., N 1

5 \mathbb{Z}_{N} Symmetries

- $SO(10) \supset U(1)_X \rightarrow \mathbb{Z}_N$ by a GUT Higgs with X = N
- Different assignments of charges can give the same low evergy potential
- Limited number of Lagrangian terms due to renormalisability
- For higher N, the U(1)_X symmetric part plus one or two terms

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

6 Scalar Dark Matter

- Scalars simplest dark matter
- May be seen via the Higgs portal
- New scalars can improve vacuum stability of the SM Higgs potential

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

7 Simplest Scalar Dark Matter

◆□> ◆□> ◆三> ◆三> ●三 のへで

- Standard Model Higgs H
- Singlet S $\langle H \rangle = \frac{\nu}{\sqrt{2}}, \langle S \rangle = 0$

8 \mathbb{Z}_3 Invariant Potential

$$\begin{split} V_{\mathbb{Z}_3} &= \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 \\ &+ \lambda_{SH} |S|^2 |H|^2 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3}) \end{split}$$

《曰》 《聞》 《臣》 《臣》 三臣 --

with $X_{H} = 0, X_{S} = 1$

Bélanger, K. K., Pukhov, Raidal, 1211.1014

Ma, 0708.3371

8 \mathbb{Z}_3 Invariant Potential

$$\begin{split} V_{\mathbb{Z}_3} &= \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 |S|^2 + \lambda_S |S|^4 \\ &+ \lambda_{SH} |S|^2 |H|^2 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3}) \end{split}$$

with
$$X_{H} = 0, X_{S} = 1$$

Bélanger, K. K., Pukhov, Raidal, 1211.1014

Ma, 0708.3371

Semi-annihilation

《曰》 《聞》 《臣》 《臣》 三臣

9 Bound on μ_3

Too large μ_3 would break \mathbb{Z}_3 , yielding the bound

$$max\,\mu_3\approx 2\sqrt{2}\sqrt{\frac{\lambda_S}{\delta}}M_S\text{,}$$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

where $0\leqslant\delta\leqslant2$

- $\delta = 2$ gives absolute stability
- $\delta < 2$ gives metastability

Adams, hep-ph/9302321

Higgs boson hints at vacuum bubble apocalypse

Email Print

Tweet 7

2

Wed, 20 Feb 2013 1:21p.m.

Related Articles

Russian meteorite injures more than 400 Meteor offers rare view NZ's first space launch saved by \$6 part Super Moon to rise over New Zealand

Tags

Space Science Large Hadron Collider Higgs Boson

The calculation rests on the mass of the particle believed to be the Higgs boson (file pic)

11 Relic Density & Direct Detection

< □ > < □ > < □ > < □ > < □ > < □ >

æ

12 Relic Density

$$\frac{\mathrm{d}n}{\mathrm{d}t} = -\nu\sigma^{SS^* \to XX} \left(n^2 - \overline{n}^2\right) \\ -\frac{1}{2}\nu\sigma^{SS \to S^*X} \left(n^2 - n\,\overline{n}\right) - 3\mathrm{Hn}$$

Fraction of semi-annihilation

$$\alpha = \frac{1}{2} \frac{\nu \sigma^{SS \to S^*X}}{\nu \sigma^{SS^* \to XX} + \frac{1}{2} \nu \sigma^{SS \to S^*X}}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

13 Parameter Space

- $\blacksquare \ 1 \ GeV \leqslant M_S \leqslant 1000 \ GeV$
- $\blacksquare \ 0 \ GeV \leqslant \mu_3 \leqslant 4000 \ GeV$
- $\blacksquare \ 0 \leqslant \lambda_S \leqslant \pi$
- $\blacksquare \ -2\pi \leqslant \lambda_{SH} \leqslant 2\pi$
- The WMAP 3σ range

$$\Omega h^2 = 0.1009 \pm 0.0056$$

◆ロ> ◆母> ◆ヨ> ◆ヨ> = = のへで

14 $|S|^2|H|^2$ Coupling λ_{SH} vs. M_S

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲□▶

15 Cubic Coupling $\mu_3 vs. M_s$

◆□> ◆□> ◆目> ◆目> ●目 − のへで

16 Direct Detection

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のんで

17 Scale of New Physics

What is the scale of validity from

- perturbativity,
- vacuum stability?

In RGE running to higher energies,

• $\lambda_{SH} > 0$ stabilises the scalar potential

《曰》 《聞》 《臣》 《臣》 三臣 --

• Large λ_S blows up perturbativity

18 Direct Detection

▲ロ▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - の々で

19 \mathbb{Z}_3 Singlet & Inert Doublet

- Standard Model Higgs H₁
- Inert doublet H₂
- Complex singlet S
- S and H_2^0 mix into $x_1 \approx S$ and $x_2 \approx H_2^0$ with $M_{x_1} < M_{x_2}$

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

20 \mathbb{Z}_3 Invariant Potential

Quartic semi-annihilation coupling

$$V_{\mathbb{Z}_3} \supset \frac{\lambda_{S12}}{2} (S^2 H_1^\dagger H_2 + S^{\dagger 2} H_2^\dagger H_1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

21 \mathbb{Z}_3 Processes

Annihilation

$$x_1x_1^* \to XX$$

Semi-annihilation

$$x_1x_1 \to x_2X$$

◆□> ◆□> ◆三> ◆三> ●三 のへで

22 $|S|^2|H_1|^2$ Coupling λ_{S1} vs. M_{x_1}

- ◆ □ ▶ ◆ 目 ▶ ◆ 目 ▶ ◆ 日 ▶ ● ○ ●

23 Cubic Coupling $\mu_{S}^{"}$ vs. $M_{x_{1}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

24 $\lambda_{S12}S^2H_1^{\dagger}H_2$ Coupling vs. M_{x_1}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

25 Direct Detection

▲日▶ ▲圖▶ ▲画▶ ▲画▶ ▲目▼

 $h \rightarrow \gamma \gamma$ at LHC

27 Conclusions

- *The* simplest model with semi-annihilation:
 Z₃ scalar singlet dark matter
- Semi-annihilation yields lower σ_{SI} for a given Ω
- Large semi-annihilation needs TeV-scale new physics
- Models with H₁, H₂, S have quartic semi-annihilation terms for Z_N, N > 2

▲ロト ▲園ト ▲画ト ▲画ト 三直 - のへで

- Work in progress:
 - Z₄ model with two-component DM