

DEPFET Active pixel sensors for future e⁺e⁻ experiments

Carlos Marinas University of Bonn

On behalf of the DEPFET Collaboration

- DEPFET for future colliders
 - SuperKEKB and ILC
- DEPFET system
 - Sensor development
 - ASICs
- Latest results
 - Lab and beam tests

Future vertex detectors

The Belle II Collaboration decided on DEPFET as baseline for the pixel detector

The Belle II PXD DEPFET ladders: *almost* prototypes for L1 and L2 of ILD

• Both detectors have very similar requirements

	Belle II	ILC
Occupancy	0.4 hits/µm²/s	0.13 hits/µm²/s
Radiation	2 Mrad/year	< 100 krad/year
	2⋅10 ¹² 1 MeV n _{eq} per year	10 ¹¹ 1 MeV n _{eq} per year
Duty cycle	1	1/200
Frame time	20 µs	25-100 µs
Momentum range	Low momentum (< 1 GeV)	All momenta
Acceptance	17º-155º	6°-174°
Material budget	0.21% X ₀ per layer	0.12% X ₀ per layer
Resolution	10 μm (50x75 μm²)	3 μm (20x20 μm²)

→ Belle II presents more severe challenges than ILC in many different aspects

DEPFET – DEpleted Field Effect Transistor

- Concept: amplifying transistors in a fully depleted bulk
- Internal gate forms potential minimum for e⁻
- Stored charge modulates the channel current
- Small intrinsic noise
- Sensitive off-state, no power consumption
- Internal amplification $g_{q} \sim 0.3 1.0 \text{ nA/e}^{-1}$

DEPFET pixel array

- Pixels are arranged in a matrix
- Row wise readout
- clear **V** source clear[n] gate[n] line driver drain DEPFET matrix Current receiver, ADC chip MEM PDC
 - Gate, clear lines need Switcher steering chip
 - Long drain readout lines to keep material out of the acceptance region

The DEPFET ladder

DHP (Data Handling Processor) First data compression

IBM CMOS 90 nm (TSMC 65 nm) Size $4.0 \times 3.2 \text{ mm}^2$ Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation Rad. Hard proved (100 Mrad) ⁷

The DEPFET ladder

Use anisotropic etching on bonded wafers to create a thin, self-supporting sensor \rightarrow One material: uniform and small thermal expansion

PXD6 DEPFET latest prototype production

8 SOI wafers with 50 μ m thin sensors (400 μ m handle)

- \bullet Small test matrices to test different pixel sizes (50-200 $\mu\text{m})$
- Design variations: short gate lengths, clear structures, drift
- Full size sensors –half ladders for prototyping
- Technology variations on the wafer level

90 steps fabrication process:

- 9 Implantations19 Lithographies2 Poly-layers2 Alu-layers1 Copper layerBack side processing
- First 50 µm thin DEPFET sensors produced!

Hybrid 5.0 – Concept demonstrator

universität**bonn**

- Zero suppressed readout with the minimum necessary amount of components:
 - One Switcher-B
 - One DCDBv2
 - One DHP 0.2
 - Small thin matrix: Belle II SD PXD6 type, 16x128 pixels, 50x75 μm² pitch
- Frame rate: 300 kHz (small matrix)

Laboratory tests: DEPFET sensor

- Biasing optimization (HV, ClearGate, Drift)
- Laser scan ٠ Charge collection homogeneity In pixel studies
- Radioactive source • System calibration

Homogeneous charge collection 12

Laboratory tests: DCD

V_{gate, off} V DCD dynamic measurements • gate, on Readout speed with single sampling $\mathsf{V}_{\mathsf{dear},\mathsf{high}}$ $\mathsf{V}_{\mathsf{clear},\mathsf{lov}}$ Belle II PXD frame readout: 20 µs ٠ (50 KHz frame rate) drain integration / Read-clear cycle: 100 ns ۲ readout clear next cycle charge collection (768 rows, 4 fold readout) 15 Enough headroom for safe fast speed operation during clear gate off / clear off 1st sample gate on clear on -15 time / ns 90 ns Long drain lines $\sim 60 \, \text{pF}$ parasitic -20 -10 10 20 30 40 50 60 70 80 90 0 capacitance

Laboratory tests: DHP serial link

+ pre-emphasis

Irradiated (100 Mrad) DHPT 0.1, can drive 15 m of Infiniband cable

Beam tests

DEPFET PXD6 extensively tested over the last campaigns 120 GeV pions at CERN-SPS 1-5 GeV electrons at DESY

Sensor properties

Charge collection homogeneity, operating points, efficiency, angular scans Various pixel sizes, gate lengths, clear structures, drift regions and pixel designs

System related aspects

Power supply prototypes DHH and ONSEN readout

Here, just an appetizer

Beam tests

Electric MultiChip Module (E-MCM)

4 layer kapton cable attached and wire bonded to Si-Module for I/O and power

Electric MultiChip Module (E-MCM)

- Metal system as close as possible to final \rightarrow Electrical information
- Commissioning: Flip chip, discrete components and kapton attachment

E-MCM in reality

→ Modules produced, tested and flip chipped

Detail of the Switcher landing area

EMCM as today

- The DEPFET Collaboration is developing utra-transparent pixel sensors with integrated amplification
- The good performance of the DEPFET detector system in terms of SNR, spatial resolution, readout speed is demonstrated
- The Belle II PXD boosted the development of DEPFET detectors
 → Direct benefit towards the ILC-VXD project (ILD-VXD layer concept 'engineered')
- Building a real system: Every detail (although not covered here) is being considered

 \rightarrow Cooling, mechanics, DAQ, ...

Thank you