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Introduction and motivation

@ Understanding the basic analytic and algebraic structure of
integrands and integrals of scattering amplitudes

@ Exploration of methods for obtaining theoretical predictions in
perturbative Quantum Field Theory at higher orders, required for
experiments in high-energy physics

We developed a coherent framework for the integrand decomposition
of Feynman integrals

@ based on simple concepts of algebraic geometry
@ applicable at all loops
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Integrand reduction via polynomial division

Integrand reduction
@ Generic ¢-loop integral:

d d =
M, = dqy...d%q Iil---im Iil"'i" - ﬁ

e the numerator N, ._;, is polynomial in g;
e the denominators D; are quadratic polynomials in g;

@ The integrand-reduction method leads to the decomposition:
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@ The residues A;,. ; are irreducible polynomials in g;

@ universal topology-dependent parametric form
o the coefficients of the parametrization are process-dependent
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Integrand reduction via polynomial division

Polynomial division and residues

[Y, Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]
@ Trade (g1, - .., qe¢) with their coordinates z = (z1,...,z4)
@ Define the Ideal of polynomials

jE(Dil,...,Din>:{ Zh hGPH}

@ Take a Grobner basis G of J
Gy ={g,...,8} suchthat J={g,...,g)

@ Perform the multivariate polynomial division N;, ;,/G 7
l1 ln Z'/\[ll k— 11 0n ) ()+Ail"'irz(z)

@ A, ..; is the remainder of the polynomial division, and can be identified
with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

[P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]

The recursive formula
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@ Fit-on-the-cut approach

e from a generic NV, get the parametric form of the residues A
e determine the coefficients sampling on the cuts (impose D; = 0)

@ Divide-and-Conquer approach

e generate the N of the process
e compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

From integrands to integrals

@ By integrating the integrand decomposition

A i .
Mn: ddql...dng<M+...+Z
n k=1

A,
+ A
Di, ...D; D, @>

e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

T. Peraro (MPI - Minchen) Integrand reduction at NLO and beyond EPSHEP, 2013



Outline

e Application at one-loop

T. Peraro (MPI - Mlnchen) Integrand reduction at NLO and beyond EPSHEP, 2013



One-loop decomposition

PN

= €40 + €30 ]>
+ €20 O + €10 O
+ ocqq |ara + C3,7]> + 62.9—@—

@ Start from the most general one-loop amplitude in d = 4 — 2¢
@ Apply the recursive formula for the integrand decomposition
@ Drop the spurious terms

= Get the most general integral decomposition (well knwon result)
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Integrand Reduction via Laurent series expansion

P. Mastrolia, E. Mirabella, T. P. (2012)
@ The one loop integrand decomposition
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@ The integrand reduction via Laurent expansion

o fits residues by taking their asymptotic expansions on the cuts
e requires the computation of fewer coefficients
@ subtractions at the coefficient level

@ Semi-numerical implementation in the C++ library NINJA

o Laurent expansions via a simplified polynomial-division algorithm
e interfaced with the package GOSAM
e is a faster and more stable integrand-reduction algorithm
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Application at one-loop

From amplitudes to observables with GOSAM

Subtraction Born & Real emission

M= Monte Carlo

(Madevent, Sherpa, Powheg)

(Samurai, Ninja, Golem95)

The GOSAM collaboration:
G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,
G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T. P.
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Application: pp — 1tH + jet with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. P. (work in progess)

HF 4 jet: Higgs trans

@ Interfaced with the Monte Carlo SHERPA

@ Benchmarks:

| sub-process | # diagrams | seconds/event |

qq — ttHg

320

0.2

gg — ftHg

1575

2.5
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Extension to higher loops

@ The integrand-level approach to scattering amplitudes one-loop
@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CuTToOLS, NGLUONS]

@ has produced (and is still producing) results for LHC
[GOoSAM (see G. Ossola’s talk),

BLACKHAT, MADLOOP, NJETS, FORMCALC, OPENLOOP ...]
@ At two or higher loops
@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities
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Extension to higher loops

@ The integrand-level approach to scattering amplitudes one-loop

e can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CuTToOLS, NGLUONS]

@ has produced (and is still producing) results for LHC
[GOoSAM (see G. Ossola’s talk),

BLACKHAT, MADLOOP, NJETS, FORMCALC, OPENLOOP ...]
@ At two or higher loops
@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

@ ...we are moving the first steps in this direction
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N =4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)

@ Examples in N =4 SYM and N/ = 8 SUGRA amplitudes (d = 4)

@ generation of the integrand
@ graph based [Carrasco, Johansson (2011)]
@ unitarity based [U. Schubert (Diplomarbeit)]

e fit-on-the-cut approach for the reduction
@ Results:

N =4 linear combination of 8 and 7-denominators Mls
N = 8 linear combination of 8, 7 and 6-denominators Mls
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Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2013)
The divide-and-conquer approach to the integrand reduction

@ does not require the knowledge of the solutions of the cut

@ can always be used to perform the reduction in a finite number of
purely algebraic operations

@ has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

PYTHON

[ MACAULAY2 ] <: Q 5 :>

@ also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)
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Higher loops

Examples of divide-and-conquer approach

@ Photon self-energy in massive QED, (4 — 2¢)-dimensions

@ & Q1 ‘
A e
(a) Q) ()

@ Diagrams entering gg — H, in (4 — 2¢)-dimensions

a1
(73 ---- -—-- % -—--
Q1 k q2 k k
q1
(a) O] (o)
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Conclusions

@ We developed a general framework for the reduction at the
integrand level
@ can be applied to any amplitude in any QFT
e is valid at every loop order
@ At one-loop
o naturally reproduces the OPP result
o allows to compute the amplitude without performing any (new)
integration
o leads to well established and successful techniques
@ At higher loops
o it gives a recursive formula for the integrand decomposition
o generates the form of the residue for every cut
@ The divide-and-conquer approach
e can be used to implement the whole reduction of any integrand with
purely algebraic operations
@ has been automated in a python package
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