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Introduction and motivation

Introduction and motivation

Motivation
Understanding the basic analytic and algebraic structure of
integrands and integrals of scattering amplitudes
Exploration of methods for obtaining theoretical predictions in
perturbative Quantum Field Theory at higher orders, required for
experiments in high-energy physics

We developed a coherent framework for the integrand decomposition
of Feynman integrals

based on simple concepts of algebraic geometry
applicable at all loops
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Integrand reduction via polynomial division

Integrand reduction

Generic `-loop integral:

Mn =

∫
ddq1 . . . ddq` Ii1...in , Ii1...in ≡

Ni1...in

Di1 . . .Din

the numerator Ni1...in is polynomial in qi

the denominators Di are quadratic polynomials in qi

The integrand-reduction method leads to the decomposition:

Ii1...in =
∆i1···in

Di1 . . .Din
+ . . .+

n∑
k=1

∆ik

Dik
+ ∆∅

The residues ∆i1...ik are irreducible polynomials in qi

universal topology-dependent parametric form
the coefficients of the parametrization are process-dependent
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Integrand reduction via polynomial division

Polynomial division and residues
[Y, Zhang (2012), P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]

Trade (q1, . . . , q`) with their coordinates z ≡ (z1, . . . , zm)

Define the Ideal of polynomials

J ≡ 〈Di1 , . . . ,Din〉 =

{
p(z) : p(z) =

∑
j

hj(z)Dj(z), hj ∈ P[z]

}

Take a Gröbner basis GJ of J
GJ = {g1, . . . , gs} such that J = 〈g1, . . . , gs〉

Perform the multivariate polynomial division Ni1...in/GJ

Ni1···in(z) =

n∑
k=1

Ni1···ik−1ik+1···in(z) Dik (z) + ∆i1···in(z)

∆i1···in is the remainder of the polynomial division, and can be identified
with the residue
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Integrand reduction via polynomial division

Recursive Relation for the integrand decomposition

[P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)]

The recursive formula

Ni1···in =
n∑

k=1

Ni1···ik−1ik+1···in Dik + ∆i1···in

Ii1···in ≡
Ni1···in

Di1 · · ·Din
=
∑

k

Ii1···ik−1ik+1···in +
∆i1···in

Di1 · · ·Din

Fit-on-the-cut approach
from a generic N , get the parametric form of the residues ∆
determine the coefficients sampling on the cuts (impose Di = 0)

Divide-and-Conquer approach
generate the N of the process
compute the residues by iterating the polynomial division algorithm
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Integrand reduction via polynomial division

From integrands to integrals

By integrating the integrand decomposition

Mn =

∫
ddq1 . . . ddq`

(
∆i1···in

Di1 . . .Din
+ . . .+

n∑
k=1

∆ik

Dik
+ ∆∅

)

some terms vanish and do not contribute to the amplitude
⇒ spurious terms
non-vanishing terms give Master Integrals (MIs)

The amplitude is a linear combination of MIs
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Application at one-loop

One-loop decomposition

+

+

+

+ + +

= c4,0 c3,0

c3,7 d+ 2

c2,0

c2,9 d+ 2

c1,0

c4,4 d+ 4

Start from the most general one-loop amplitude in d = 4− 2ε

Apply the recursive formula for the integrand decomposition

Drop the spurious terms

⇒ Get the most general integral decomposition (well knwon result)
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Application at one-loop

Integrand Reduction via Laurent series expansion
P. Mastrolia, E. Mirabella, T. P. (2012)

The one loop integrand decomposition

Ii1···in =
Ni1···in

Di1 · · ·Din
=

∑
j1...j5

∆j1j2j3j4j5

Dj1 Dj2 Dj3 Dj4 Dj5
+

∑
j1j2j3j4

∆j1j2j3j4

Dj1 Dj2 Dj3 Dj4

+
∑
j1j2j3

∆j1j2j3

Dj1 Dj2 Dj3
+

∑
j1j2

∆j1j2

Dj1 Dj2
+

∑
j1

∆j1

Dj1

The integrand reduction via Laurent expansion

fits residues by taking their asymptotic expansions on the cuts
requires the computation of fewer coefficients
subtractions at the coefficient level

Semi-numerical implementation in the C++ library NINJA

Laurent expansions via a simplified polynomial-division algorithm
interfaced with the package GOSAM
is a faster and more stable integrand-reduction algorithm
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Application at one-loop

From amplitudes to observables with GOSAM

The GOSAM collaboration:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,

G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T. P.
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Application at one-loop

Application: pp→ t̄tH + jet with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T. P. (work in progess)

LHC 8 TeV

cteq6mE pdf

anti-kt: R=0.5, pT > 15 GeV, |η| < 4.0
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Interfaced with the Monte Carlo SHERPA

Benchmarks:
sub-process # diagrams seconds/event
qq̄→ t̄tHg 320 0.2
gg→ t̄tHg 1575 2.5
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Higher loops

Extension to higher loops

The integrand-level approach to scattering amplitudes one-loop
can be used to compute any amplitude in any QFT
has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NGLUONS]
has produced (and is still producing) results for LHC
[GOSAM (see G. Ossola’s talk),
BLACKHAT, MADLOOP, NJETS, FORMCALC, OPENLOOP . . . ]

At two or higher loops
no general recipe is available
the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

. . . we are moving the first steps in this direction
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Higher loops

N = 4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2012)

Examples in N = 4 SYM and N = 8 SUGRA amplitudes (d = 4)
generation of the integrand

graph based [Carrasco, Johansson (2011)]
unitarity based [U. Schubert (Diplomarbeit)]

fit-on-the-cut approach for the reduction
Results:

N = 4 linear combination of 8 and 7-denominators MIs
N = 8 linear combination of 8, 7 and 6-denominators MIs
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Higher loops

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T. P. (2013)

The divide-and-conquer approach to the integrand reduction
does not require the knowledge of the solutions of the cut
can always be used to perform the reduction in a finite number of
purely algebraic operations
has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

PYTHON

MACAULAY2 FORM⇒⇐
also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)
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Higher loops

Examples of divide-and-conquer approach

Photon self-energy in massive QED, (4− 2ε)-dimensions

Diagrams entering gg→ H, in (4− 2ε)-dimensions
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Conclusions

Conclusions

We developed a general framework for the reduction at the
integrand level

can be applied to any amplitude in any QFT
is valid at every loop order

At one-loop
naturally reproduces the OPP result
allows to compute the amplitude without performing any (new)
integration
leads to well established and successful techniques

At higher loops
it gives a recursive formula for the integrand decomposition
generates the form of the residue for every cut

The divide-and-conquer approach
can be used to implement the whole reduction of any integrand with
purely algebraic operations
has been automated in a python package
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