

Outline

Physics motivations

In-medium effects

If in-medium quark re-combination dominant mechanism of charm hadron formation at low $p_T \rightarrow$ strange charm hadrons (D_s) expected to be largely enhanced.

I. Kuznetsova and J. Rafelski, Eur.Phys.J. C51 (2007) 113-133.

M. He, R. J. Fries and R. Rapp, Phys.Rev.Lett. 110 (2013) 112301, arXiv:1204.4442 [nucl-th]

A. Grelli - HEP2013

10

9 p_ [GeV/c]

Thermalization and path length dependence

5

Detector and data sample

D mesons via hadronic decay channels

p_T-differential nuclear modification factor and v₂

Comparison with models

Centrality dependent RAA: Mass hierarchy

D meson R_{pPb}

$$R_{\rm pPb} = \frac{(\frac{\rm d\sigma}{\rm dp_T})_{\rm pPb}}{A \times (\frac{\rm d\sigma}{\rm dp_T})_{\rm pp}}$$

Heavy Flavour decay electrons RAA and v2: Pb-Pb, 0-10%

Heavy Flavour decay electrons RAA : 40-50%

Heavy flavour decay electrons R_{pPb}

Heavy flavour decay muons: RAA and v2

Conclusions

pp as baseline for Pb-Pb: D⁰, D⁺ and D^{*+}

pp as baseline for Pb-Pb: D⁰, D⁺ and D^{*+}

D mesons v2

D mesons R_{pPb}

Inclusive electron yield and cocktail background: pPb

a.grelli@uu.nl

Centrality dependent RAA: Mass hierarchy

Heavy Flavour decay electrons

HF decay electrons vs HF decay muons

LI-DER-36791 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.5

6

8

9

p_{_} [GeV/c]

10