Neutrino mixing:
Results from accelerator experiments

Atsuko K. Ichikawa, Kyoto University, Japan

Special thanks to the following people for help with the preparation of this talk

Alexander Korzenev (NA61)
Alessandra Pastore (OPERA)
Cheryl Patrick (MINERvA)
Andre Rubbia (LBNO)
Hide-Kazu Tanaka (Hyper-K)
Abbey Waldron (NOvA)
Michael Wilking (T2K)
Elizabeth Worcester (LBNE)
Outline

• What are the open questions?
• ν_μ disappearance
• Anomalies (sterile neutrino?)
• Progress towards precision measurement
• ν_e appearance
• From now on
Three Flavor Mixing in Lepton Sector

Weak eigenstates

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\cos \theta_{ij} = c_{ij}, \sin \theta_{ij} = s_{ij}$$

$$\Delta m^2_{12}, \Delta m^2_{23}, \Delta m^2_{13}$$

$$\Delta m^2_{21}, \Delta m^2_{32}, \Delta m^2_{31}$$

Two free parameters for the three Δm^2's.

$$\Delta m^2_{31} = \Delta m^2_{21} + \Delta m^2_{32}$$

$$* \Delta m^2_{ji} = m_j^2 - m_i^2$$
Strange feature of mixing matrix

\[U_{CKM} \approx \begin{pmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 1.01 & 0.04 \\ 0.008 & 0.04 & 0.89 \end{pmatrix} \quad U_{PMNS} \approx \begin{pmatrix} 0.82 & 0.55 & 0.16 \\ -0.49 & 0.52 & 0.55 \\ 0.20 & -0.65 & 0.70 \end{pmatrix} \]

(writing just magnitude)

- 1999: Upper limit (<11°) by Chooz reactor experiment
- 2011: Indication (2.5σ) of non-zero \(\theta_{13} \) by T2K \(\nu_e \) appearance (1.7σ by MINOS)
- 2012: Evidence of non-zero \(\theta_{13} \) (>5σ) by reactor \(\nu_e \) disappearance (Daya Bay, RENO, Double Chooz) 3.1σ by T2K \(\nu_e \) appearance

Based on PDG 2012

Measured in 2011~2012!
Target of neutrino oscillation experiments

Mixing matrix for leptons

\[
U_{PMNS} = \begin{pmatrix}
1 & 0 & 0 \\
0 & +c_{23} + s_{23} & 0 \\
0 & -s_{23} + c_{23} & 0
\end{pmatrix}
+ \begin{pmatrix}
c_{13} & 0 & +s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & +c_{13}
\end{pmatrix}
+ \begin{pmatrix}
c_{12} & +s_{12} & 0 \\
-s_{12} & +c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}) \]

Unknown

CP phase

KEY to understand the origin of matter dominant universe

Mixing angles

- \(\theta_{12} = 34^\circ \pm 1^\circ \)
- \(\theta_{23} = 40^\circ + 5^\circ / -2^\circ \)
- \(\theta_{13} = 9.1^\circ \pm 0.6^\circ \)!

How close to 45\(^\circ\)?

How close to 45\(^\circ\)?

Reactor experiments

Big Impact on 0\(\nu\) double-\(\beta\) decay search (hence on Majorana \(\nu\) confirmation)

Mass Hierarchy

Normal

- \(\sim 7.6 \times 10^{-5}eV^2 \)
- \(\sim 2.4 \times 10^{-3}eV^2 \)

Inverted

- \(\sim 7.6 \times 10^{-5}eV^2 \)
- \(\sim 2.4 \times 10^{-3}eV^2 \)

OR

Unknown
Unsolved problems concerning the basic property of neutrino

- Strange features of mixing matrix
- Is CP violated like in the case of quarks?
- Are there only three types of neutrinos?
- Are neutrinos the origin of the matter-dominant universe?
- Why are they so light compared to quarks or charged leptons?
- Are neutrinos Majorana particles?
- Absolute mass
-
Oscillation at $L(km)/E(GeV) \sim 500$

Leading term

$$
\Delta m_{32} \frac{L}{4E} \sim \Delta m_{31} \frac{L}{4E} \sim \frac{\pi}{2}, \quad \Delta m_{21} \frac{L}{4E} \sim 0
$$

- **θ_{23}**: ν_μ disappearance

 $$
P_{\mu \to x} \approx 1 - \sin^2 2\theta_{23} \cdot \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)
$$

 Mainly go to ν_τ.
 Since τ production threshold is high (3.5GeV), it disappears in CC current interaction.

- **θ_{13}**: ν_e appearance

 $$
P_{\mu \to e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)
$$

 ~ 0.5
World Long baseline ν oscillation experiments

- OPERA (2008-) ICARUS (2010-) 732km
- MINOS (2005- 2012) 735km
- NOvA (2013-) 819km
- K2K (1999-2004) 250km
- T2K (2010-) 295km
MINOS ν_μ disappearance ν vs. $\bar{\nu}$

Leading measurement of $|\Delta m^2_{\text{atm}}|$ w/ 4.1% precision using accelerator and atmospheric ν's and $\bar{\nu}$'s.

MINOS ν_μ disappearance

- 10.71×10^{20} POT ν_μ mode
- 3.36×10^{20} POT $\bar{\nu}_\mu$ mode
- 37.88 kt-yr Atmospheric

90% C.L.
- ν_μ
- $\bar{\nu}_\mu$
- $\nu_\mu + \bar{\nu}_\mu$

Best fit
- ν_μ
- $\bar{\nu}_\mu$
- $\nu_\mu + \bar{\nu}_\mu$

$|\Delta m^2| - |\Delta m^2| = 0.12^{+0.24}_{-0.26} \times 10^{-3} \text{eV}^2$

MINOS finds consistent values for neutrinos and antineutrino oscillation parameters measured via charged-current disappearance.
Tokai-to-Kamioka (T2K) experiment

\(\sim 0.6 \text{ GeV} \, \nu_\mu \) over 295km

- \(\nu_e \) appearance \(\rightarrow \theta_{13} \)
 - e-like ring, \(\pi^0 \) mass cut etc.
- \(\nu_\mu \) disappearance \(\rightarrow \theta_{23} \)
 - \(\mu \)-like ring etc.

Latest results reported by M. Wilking, EPS HEP2013
T2K data-taking status

Great East Japan Earthquake

6.63 x 10^{20} protons on target (p.o.t.) so far
8.5% of T2K goal statistics
Using data up to Run 3
Only $\theta_{23} < \pi/4$ region was explored in the results released in February 2013.
This time $\theta_{23} > \pi/4$ is also considered. Significant difference appeared.

$$P_{\mu \to \mu} \approx 1 - \left(\cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \right) \sin^2 \left(\frac{\Delta m^2 L}{4 E_{\nu}} \right)$$

\[\approx 1 - \left(\cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \right) \sin^2 \left(\frac{\Delta m^2 L}{4 E_{\nu}} \right) \]
Confirmation of $\nu_\mu \to \nu_\tau$ by OPERA

3.8σ ν_τ appearance by Super-K atmospheric data (Abe et al., PRL 110, 181802 (2013)) from a sample of enhanced τ-like events.

OPERA identifies τ production in event-by-event basis.

Third ν_τ candidate taken in March, 2013

376μm

Extended sample

<table>
<thead>
<tr>
<th></th>
<th>Signal</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau \to h$</td>
<td>0.66</td>
<td>0.045</td>
</tr>
<tr>
<td>$\tau \to 3h$</td>
<td>0.51</td>
<td>0.090</td>
</tr>
<tr>
<td>$\tau \to \mu$</td>
<td>0.56</td>
<td>0.026</td>
</tr>
<tr>
<td>$\tau \to e$</td>
<td>0.49</td>
<td>0.065</td>
</tr>
<tr>
<td>total</td>
<td>2.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

w/ ~60% of data analyzed

3 observed events in the $\tau \to h$, $\tau \to 3h$ and $\tau \to \mu$ channels

Probability to be explained as a background = 7×10^{-4}

This corresponds to 3.2 σ significance of non-null observation (3.5 σ significance with a likelihood approach)
Anomalies at small L/E
(Large Δm^2 in case of oscillation w/ sterile ν)

Two anomalies

✓ ν_e excess in ν_μ beam by LSND and MiniBooNE
✓ ν_e disappearance (reactor and Gallium experiments)

MiniBooNE PRL 110, 161801 (2013)
Anomalies at small L/E
(Large Δm^2 in case of oscillation with sterile ν)

OPERA 2008-2009 data
A. Pastore, EPS HEP 2013

Search will be continued in ν_e appearance, ν_μ or ν_e disappearance

Many experimental proposals

- ICARUS/NESSiE at CERN
- MINOS+ using beam from FNAL (running with NOvA)
- Possibly T2K, NOvA
Accelerator Neutrino Physicists have to know about the strong interaction.

- **Flux prediction**
 - ν’s parent particles are produced by hadron production from p+Nucleus interactions

- **Neutrino Interaction**
 - ν+Nucleus interaction is affected by nuclear state
NA61/SHINE Hadron production measurements for the ν_μ flux in T2K

Neutrino Flux Prediction in T2K

- Cross sections for π^\pm, K^\pm, p and K^0_S
- Cover ~90% of the p phase space of T2K
- Measurement for NuMI target at 120 GeV/c
- New results are released in EPS-HEP2013

Alexander Korzenev EPS-HEP2013
Charged Current Quasi-Elastic scattering by MINERvA (at FNAL MINOS near detector hall)

Cheryl Patrick at EPS-HEP 2013

‘n’ or ‘p’ is in the nucleus and interacting w/ other nucleons.
Data favors TEM (Transverse Enhancement), suggesting initial-state correlations
Latest results of ν_e appearance

Key mode for CP δ, Mass Hierarchy and θ_{23} octant
\(\nu_e \) appearance
(complete version in vacuum)

\[
P(\nu_\mu \to \nu_e) = 4C_{13}^2 S_{13}^2 S_{23}^2 \sin^2 \Phi_{31} + 8C_{13}^2 S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \Phi_{32} \sin \Phi_{31} \sin \Phi_{21} - 8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \Phi_{32} \sin \Phi_{31} \sin \Phi_{21} + 4S_{12}^2 C_{13}^2 (C_{12}^2 C_{23}^2 + S_{12}^2 S_{23}^2 S_{13}^2 - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta) \sin^2 \Phi_{21}.
\]

\(C_{ij} = \cos \theta_{ij}, \quad S_{ij} = \sin \theta_{ij} \)

\(\Phi_{ij} = \Delta m_{ij}^2 \frac{L}{4E_v} \)

CP violating term introduced by interference btw. \(\theta_{13} \) and \(\theta_{12} \)

\(\delta \to -\delta \) for \(P(\text{anti-}\nu_\mu \to \text{anti-}\nu_e) \)
\(\nu_e \) appearance at oscillation maximum

\[
P(\nu_\mu \rightarrow \nu_e) \approx 4C_{13}^2 S_{13}^2 S_{23}^2 \left(1 + \frac{2a}{\Delta m^2_{31}}\right) - 8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \Phi_{21} \sin \delta
\]

\[C_{ij} = \cos \theta_{ij}, S_{ij} = \sin \theta_{ij}, \quad \Phi_{ij} = \Delta m^2_{ij} \frac{L}{4E}\]

Matter effect

\[
a = 2\sqrt{2}G_F n_e E = 7.56 \times 10^{-5} \text{eV}^2 \frac{\rho}{\text{g cm}^{-3}} \frac{E}{\text{GeV}}
\]

\(\nu_e \) feels different potential than \(\nu_\mu \) and \(\nu_\tau \) in earth.

\[\delta \rightarrow -\delta, \quad \alpha \rightarrow -\alpha\]

for \(P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \)

This matter effect size corresponds to T2K. (>x2 bigger for NOvA, MINOS and so on.)
MINOS ν_e appearance

Normal Hierarchy

$\Delta m^2 > 0$

- MINOS Best Fit $\theta_{23} < \pi/4$
- MINOS Best Fit $\theta_{23} > \pi/4$

- 68% C.L. $\theta_{23} < \pi/4$
- 90% C.L. $\theta_{23} < \pi/4$

Inverted Hierarchy

$\Delta m^2 < 0$

MINOS

- 10.6×10^{20} POT ν mode
- 3.3×10^{20} POT $\bar{\nu}$ mode

w/ reactor result

$\sin^2 2\theta_{13} = 0.098 \pm 0.013$

PRL 110, 171801(2013)
T2K ν_e Appearance Updates from 2012

- The background rejection cut is improved using a new SK reconstruction algorithm. Number of BG events reduced from 6.4 to 4.6
- Near detector measurement is improved by using new event categories

<table>
<thead>
<tr>
<th></th>
<th>2012(*)</th>
<th>2013(now)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POT</td>
<td>3.010×10^{20}</td>
<td>6.393×10^{20} (\simApr 12)</td>
</tr>
<tr>
<td>Bkgs</td>
<td>3.3 ± 0.4</td>
<td>4.64 ± 0.51</td>
</tr>
</tbody>
</table>

- Observed ν_e cand. Events: 11 vs. 28
- Observed ν_e app. Significance: 3.1σ vs. 7.5σ

* 2012 result arXiv:1304.0841 (accepted by PRD)
T2K ν_e appearance

Results

- Fit using electron (p, θ) distribution
- NOTE! $\sin^2 \theta_{23}$ is fixed to 0.5 in the fit

\[P(\nu_\mu \rightarrow \nu_e) \propto \]

\[4C_{13}^2 S_{13}^2 S_{23}^2 \left(1 + \frac{2a}{\Delta m_{31}^2} \right) - 8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \Phi_{21} \sin \delta \]

- Best fit value w/ 68% C.L. error @ $\delta_{CP}=0$

 normal hierarchy:
 \[\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034} \]

 inverted hierarchy:
 \[\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040} \]

 c.f. reactor results (PDG '12)
 \[\sin^2 2\theta_{13} = 0.098 \pm 0.013 \]
T2K ν_e appearance

δ_{CP} vs. $\sin^22\theta_{13}$
for different θ_{23}

NOTE: PDG'12 3σ region for $\sin^2\theta_{23}$: 0.34-0.64

reactor 1σ region (PDG '12)

$\sin^22\theta_{13} = 0.098 \pm 0.013$
FROM NOW ON
T2K CP violation ($\sin \delta \neq 0$) sensitivity

Simultaneously fitting ν_μ disappearance and ν_e appearance data
Use $\sin^2 2\theta_{13}$ constraint by reactor experiment

No sys. error

100% ν-mode

50%:50% ν-mode:

$\bar{\nu}$-mode

NH

IH

$\Delta \chi^2$ vs δ_{CP}
NuMI beam
• Upgrade from 350 kW to 700 kW
• Expect beam in MI today (=19th)!
• Beam to neutrino line estimated in next
14 kilotons = 28 NOvA Blocks

17 blocks of PVC modules are assembled and installed in place
10.96 blocks are filled with liquid scintillator
4.17 blocks are outfitted with electronics

Expected to complete in April/May 2014
\(\nu_e \) appearance at oscillation maximum

\[
P(\nu_\mu \rightarrow \nu_e) \approx 4C_{13}^2 S_{13}^2 S_{23}^2 \left(1 + \frac{2a}{\Delta m_{31}^2} \right) - 8C_{13}^2 C_{12} C_{23} S_{12} S_{13} S_{23} \Phi_{21} \sin \delta
\]

\[
C_{ij} = \cos \theta_{ij}, S_{ij} = \sin \theta_{ij}, \quad \Phi_{ij} = \Delta m_{ij}^2 \frac{L}{4E_v}
\]

Matter effect

\[
a = 2\sqrt{2}G_F n_e E = 7.56 \times 10^{-5} \text{eV}^2 \frac{\rho}{\text{gcm}^{-3}} \frac{E}{\text{GeV}}
\]

\(\nu_e \) feels different potential than \(\nu_\mu \) and \(\nu_\tau \) in earth.

\[
\delta \rightarrow -\delta, \quad \alpha \rightarrow -\alpha
\]

for \(P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \)
NOvA sensitivity
in case running 3 years in ν-mode
and 3 years in $\bar{\nu}$-mode.
$\sin^2 2\theta_{13} = 0.095$, $\sin^2 2\theta_{23} = 1.00$

NOTE! Sensitivities for CP δ and
MH are significantly increased by
combining T2K($L=295\text{km}$) and
NOvA($L=819\text{km}$)
LBN Next generation experiments

A short summary of A. Rubbia’s talk “Neutrino Program: the future” given on 20th in Joint ECFA-EPS session.
So just two pages summary, here.

T2K and NOvA would explore the CP phase, θ_{23} and the Mass Hierarchy w/ O(100) ν_e appearance (and ν_μ disappearance) events. \sim10% stat. error. (cf. Max. CP asymmetry \sim27%)
We may see something in certain lucky cases.
However, in order to fully explore these problems, we need \sim10 times more statistics.
World LBL Future Project

LAGUNA-LBNO 130km?~2,300km?
ESS+WC? 540km?

- **Detector options**: 20, 50, 100 kton LAr; 50 kton LSc and 540 kton WCD

LBNE 1300km
0.7MW, 10kt LAr → 2.3MW, 35kt LAr

Hyper-Kamiokande
- Total Volume: 0.99 Megaton
- Inner Volume (Fiducial Volume): 0.74 (0.56) Megaton
- Outer Volume: 0.2 Megaton
- Inner detector: 90,000 20-inch PMTs, 20% photo-coverage
- Outer detector: 25,000 8-inch PMTs

Hyper-K 295km
0.75MW →~2MW
Summary

- ν_μ disappearance
 - Confirmed $\nu_\mu \rightarrow \nu_\tau$
 - Precise measurement would answer how close to $45^\circ \theta_{23}$ is.
 (Current PDG 1\sigma region is $38^\circ \sim 45^\circ$)
- Anomalies at small L/E need to be solved.
- In the era of Precision measurement
 - Flux and ν interaction
- ν_e appearance
 - Confirmed (T2K 7.5\sigma)
 - The discovery of non-zero θ_{13} in 2012 is not the end of the story, but is the start of new quest: CP δ, Mass Hierarchy and θ_{23} octant
 - We may start to see something about CP δ.
- Stay tuned to T2K and NOvA, and the evolution of future projects