Charged Lepton Flavor and Dipole Moments

K.Kirch, ETH Zurich – PSI Villigen, CH
Setting the scene

Conservation of lepton flavor is a mystery

- Besides quark mixing, we have neutrino mixing
- Why wouldn’t we expect charged lepton mixing?
- Theories beyond SM naturally provide LFV
Setting the scene

- Conservation of lepton flavor is a mystery
 - Besides quark mixing, we have neutrino mixing
 - Why wouldn’t we expect charged lepton mixing?
 - Theories beyond SM naturally provide LFV

- Non-SM CP violation seems necessary
 - To explain the observed BAU
 - Theories beyond SM naturally provide CPV
Setting the scene

Conservation of lepton flavor is a mystery
- Besides quark mixing, we have neutrino mixing
- Why wouldn’t we expect charged lepton mixing?
- Theories beyond SM naturally provide LFV

Non-SM CP violation seems necessary
- To explain the observed BAU
- Theories beyond SM naturally provide CPV

Non-SM precision physics, finite observables
- Some uniquely sensitive areas
Setting the scene

Conservation of lepton flavor is a mystery

- Besides quark mixing, we have neutrino mixing
- Why wouldn't we expect charged lepton mixing?
- Theories beyond SM naturally provide LFV

Search for charged LFV, e.g. $\mu \rightarrow e \gamma$

Non-SM CP violation seems necessary

- To explain the observed BAU
- Theories beyond SM naturally provide CPV

Non-SM precision physics, finite observables

Some uniquely sensitive areas
Setting the scene

Conservation of lepton flavor is a mystery
- Besides quark mixing, we have neutrino mixing
- Why wouldn't we expect charged lepton mixing?
- Theories beyond SM naturally provide LFV

Search for charged LFV
- e.g. $\mu \to e \gamma$

Non-SM CP violation seems necessary
- To explain BAU
- Theories beyond SM naturally provide CPV

Search for CPV
- e.g. measure EDMs, e, n, μ, …

Non-SM precision physics, finite observables
- Some uniquely sensitive areas
Setting the scene

Conservation of lepton flavor is a mystery
- Besides quark mixing, we have neutrino mixing
- Why don't we expect charged lepton mixing?
- Theories beyond SM naturally provide LFV

Non-SM CP violation seems necessary
- To explain
 - Search for CPV
 - e.g. measure EDMs, e, n, μ, ...

Non-SM precision physics, finite observables
- Some uniquely
 - e.g. measure MDMs, e, μ, ...
Setting the scene

- Not clear what new non-SM physics will be
 - Search for LFV in all accessible channels
 - Some are more promising than others
 - But who knows? → need all to disentangle physics

- Not clear what new non-SM physics will be
 - Search for CPV in all accessible channels
 - In particular, search for EDMs in many systems

- Not clear what new non-SM physics will be
 - Measure with ultimate precision where theory can accurately calculate
This talk …

- … can’t cover all cLFV searches like, e.g. $K_L \to \mu e$, … (or other decays of π, K, D, B, W, Z, H)
- … only touches on important τ decays (dominated by Belle, LHCb entering, future: Belle-II and LHCb upgrade)
- … has LFV searches with muons (@PSI, FNAL, J-PARC)
- … has muon g-2 (@BNL, FNAL, J-PARC) but only mentions electron g-2
- … has EDM searches (many systems @many places)
(g-2)\(\mu\)

\(\tau \rightarrow \mu \gamma \rightarrow e\gamma\)

\(\mu \rightarrow e\gamma\)

\(\tau \rightarrow \mu \mu \mu \rightarrow eee\)

\(\mu \rightarrow eee\)

\(\pi^0 \rightarrow \mu e\)

\(\mu \rightarrow e\) e.g. Al

\((g-2)\)\(\mu\)

\(\mu \rightarrow e\gamma\)

\(d_\mu\)

\(d_n\)

\(d_{Hg}\)

\(d_{YbF}\)

\(d_e\)

\(d_p, d_d\)

\(d_{Xe, Ra, ...}\)

\(d_{Tl, Fr, ...}\)
The image shows a diagram of different branches of physics, including:

- Particle Physics
- Nuclear Physics
- Atomic Physics
- Molecular Physics

Within each branch, specific processes and particles are highlighted. For example, in Particle Physics, processes such as $\tau \rightarrow \mu \gamma \rightarrow e\gamma$ and $\mu \rightarrow e\gamma$ are mentioned. In Nuclear Physics, processes like $\pi^0 \rightarrow \mu e$ and $\mu \rightarrow eee$ are shown. In Atomic Physics, $\mu \rightarrow e$ and $\mu \rightarrow e e e$ are highlighted. In Molecular Physics, $e.g. Al$ and d_{YbF} are mentioned.

The diagram also lists specific particles such as d_{μ}, d_n, d_{Hg}, and d_{YbF}, along with other elements like d_e, d_p, d_d, $d_{Xe, Ra, ...}$, and $d_{Tl, Fr, ...}$.

The content suggests a discussion on the properties and transitions of these particles and their implications in each respective field of physics.
Particle Physics
Nuclear Physics
Atomic Physics
Molecular Physics

Need many experimental techniques

$\tau \rightarrow \mu \gamma$
$\mu \rightarrow e \gamma$
$\tau \rightarrow \mu \mu \mu$
$\mu \rightarrow eee$
$\pi^0 \rightarrow \mu e$
e.g. Al

(g-2)$_\mu$

$\mu \rightarrow e \gamma$
$\tau \rightarrow \mu \gamma$
$\mu \rightarrow eee$
$\pi^0 \rightarrow \mu e$
e.g. Al

(g-2)$_e$

$\mu \rightarrow e \gamma$
$\tau \rightarrow \mu \gamma$
$\mu \rightarrow eee$
$\pi^0 \rightarrow \mu e$
e.g. Al

(g-2)$_\mu$

d_μ
d_n
d_{Hg}
d_{YbF}
d_e
d_p, d_d
$d_{Xe, Ra, ...}$
$d_{Ti, Fr, ...}$
General concept: constrain effective operator coefficients

Table 1 Bounds on CP- or flavor violating effective operators, expressed as upper limits on their dimensionless coefficients ϵ, scaled to the strength of weak interactions. For more details, in particular the overall normalization convention for the effective operators, see Sect. 3.1.2

<table>
<thead>
<tr>
<th>Observable</th>
<th>Operator</th>
<th>Limit on ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>cEDM</td>
<td>$\overline{e}L \sigma^{\mu\nu} \gamma_5 e_R F{\mu\nu}$</td>
<td>$\leq 2.1 \times 10^{-12}$</td>
</tr>
<tr>
<td>$B(\mu \to e\gamma)$</td>
<td>$\overline{\mu} \sigma^{\mu\nu} e F_{\mu\nu}$</td>
<td>$\leq 3.4 \times 10^{-12}$</td>
</tr>
<tr>
<td>$B(\tau \to \mu\gamma)$</td>
<td>$\overline{\tau} \sigma^{\mu\nu} \mu F_{\mu\nu}$</td>
<td>$\leq 8.4 \times 10^{-8}$</td>
</tr>
<tr>
<td>$B(K_L^0 \to \mu^\pm e^{\mp})$</td>
<td>$(\overline{\mu} \gamma^\mu P_L e)(\overline{s} \gamma^\mu P_L d)$</td>
<td>$\leq 2.9 \times 10^{-7}$</td>
</tr>
</tbody>
</table>

From:
Raidal, van der Schaaf et al.,
Flavor physics of leptons and dipole moments,
Flavor violating Higgs decays

\[|Y_{\mu e}| \]

To illustrate complementarity

From:
Harnik, Kopp, Zupan
arXiv:1209.1397
Flavor violating Higgs decays

From: Harnik, Kopp, Zupan
arXiv:1209.1397
One slide on kaons

High NP mass scales accessible for tree-level contributions

Example: $K_L \rightarrow \mu^+e^-$

Dimensional argument:

$$\frac{\Gamma_X}{\Gamma_{SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X} \right)^4$$

For $g_X \approx g_W$ and $\mathcal{B} \sim 10^{-12}$,

$M_X \sim 100 \text{ TeV}$

To illustrate the mass reach

See also: European Strategy for PP – unique mass reach also in other rare decays, cLFV and EDMs
Reminder: cLFV is small in SM

- Only known LFV so far: neutrino mixing
- Suppressed by \((\delta m_\nu/m_W)^4\) and thus smaller than \(10^{-50}\)
 \(\rightarrow\) SM not observable
- Plenty of room for new physics

Expect from SM:
\[\text{BR}(\mu-e\gamma) < 10^{-50} \]
Experimentally so far:
\[< 5.7 \times 10^{-13} \]
Reminder: EDM are small in SM

Leptons: 4th order electro-weak

Fig. 4. The ten diagrams which contribute to the edm of the electron. The internal wavy lines are W-propagators.

F. Hoogeveen:

Expect from SM, approximately:

\[d_e \leq 10^{-38} \text{ e-cm} \]
\[d_\mu \leq 10^{-36} \text{ e-cm} \]
\[d_\tau \leq 10^{-35} \text{ e-cm} \]

Experimentally so far:

\[d_e < 1 \times 10^{-27} \text{ e-cm} \]
\[d_\mu < 2 \times 10^{-19} \text{ e-cm} \]
\[d_\tau < 3 \times 10^{-17} \text{ e-cm} \]
Reminder: EDM are small in SM

Neutron, Proton, ..

Expect from SM:
\[d_n < 10^{-30} \text{ e\,cm} \]

Experimentally so far:
\[< 2.9 \times 10^{-26} \text{ e\,cm} \]

\[d_n \sim 10^{-32} - 10^{-34} \text{ e\,cm} \]

[Khriplovich & Zhitnitsky ‘86]
Caveat:
The strong CP problem

$$L_{QCD} \approx L_{QCD}^{\theta_{QCD}=0} + \frac{g^2}{32\pi^2} \theta_{QCD} \bar{G}G$$

$$d_n \approx 10^{-16} \text{ e cm} \cdot \theta_{QCD}$$

$$\theta_{QCD} \lesssim 10^{-10}$$

Why is θ_{QCD} so small?
Reminder: $g-2$ is calculable in SM
(with remarkable precision)

\[
\begin{align*}
\text{QED:} & \quad \gamma \rightarrow \mu^+ \mu^- \gamma \\
& + \gamma \rightarrow e^+ e^- \gamma \\
& + \text{higher order terms} \\
& 11,658,470.57(29) \times 10^{-10} \\
\text{Had:} & \quad \gamma \rightarrow h \mu^+ \mu^- \\
& + \mu^+ \mu^- \rightarrow h \gamma \\
& + \text{higher order terms} \\
& 692.4(6.2) \times 10^{-10} \\
& -10.1(6) \times 10^{-10} \\
& 12(4.0) \times 10^{-10} \\
\text{Weak:} & \quad \gamma \rightarrow W^+ \nu W^- \\
& + 38.9 \\
& \gamma \rightarrow Z \mu^+ \mu^- \\
& -19.4 \\
& \gamma \rightarrow H \mu^+ \mu^- \\
& < 0.1 \\
& \text{1st + 2nd Order Weak} = 15.1(4) \times 10^{-10}
\end{align*}
\]
well known

- International effort continues on the Standard-Model theory value
 - more e^+e^- data for lowest order hadronic contribution (using a dispersion relation)
 - Lattice calculations are underway for both contributions
 - Two photon program at Frascati and BES to help with H-LBL

- Present difference is between 3 and 4 σ

significant work ongoing
The present best limits on LFV come from PSI muon experiments

$$\mu^+ \rightarrow e^+ee$$
BR $< 1 \times 10^{-12}$
SINDRUM 1988

$$\mu^- + \text{Au} \rightarrow e^- + \text{Au}$$
BR $< 7 \times 10^{-13}$
SINDRUM II 2006

$$\mu^+ \rightarrow e^+ + \gamma$$
BR $< 5.7 \times 10^{-13}$
MEG 2013

[90 % C.L.]
cLFV Searches: Current Situation

The present best limits on LFV come from PSI muon experiments

\[\mu^+ \rightarrow e^+ee \]
BR < 1×10^{-12}
SINDRUM 1988

\[\mu^- + \text{Au} \rightarrow e^- + \text{Au} \]
BR < 7×10^{-13}
SINDRUM II 2006

\[\mu^+ \rightarrow e^+ + \gamma \]
BR < 5.7×10^{-13}
MEG 2013

[90 % C.L.]
Summary Belle τ LFV results

48 modes searched for, U.L.s around $\sim 10^{-8}$

Schwanda, Lecce, 2013
Belle-II and LHCb upgrade

Activity directly confronts New Physics models of CLFV

Hitlin, Lecce, 2013
Complementarity in muon cLFV

\[\mu \rightarrow e + \text{jet} \]

\[B(\mu \rightarrow eee) = 10^{-16} \]

\[B(\mu \rightarrow e\gamma) = 10^{-14} \]

\[B(\mu \rightarrow e\gamma) = 10^{-13} \]

\[B(\mu \rightarrow \text{conv in } ^{27} \text{Al}) = 10^{-18} \]

\[10^{000} \text{ TeV} \]

\[1000 \text{ TeV} \]

\[\text{EXCLUDED (90\% CL)} \]

\[\kappa \]

\[\text{de Gouvea, Vogel} \]

\[\text{arXiv:1303.4097} \]
The MEG experiment at PSI ($\mu \rightarrow e \gamma$ decay search at rest)

New results! $< 5.7 \times 10^{-13}$ (90% CL)

End of data taking: September this year
The MEG UPgrade project (approved)

New positron Drift Chamber

New positron Timing counter

Smaller photosensors for the photon detector

Further: improved electronics and full exploitation of the PSI muon beam intensity

MEG upgrade aiming at $< 5 \times 10^{-14}$ sensitivity

Courtesy: A. Baldini
Mu3e Experiment at PSI

Experiment:

- Search for LFV decay: $\mu \rightarrow eee$
- Single event sensitivity better than 10^{-16}
- Muon rate >10^9 per second
- 100 electron tracks within 50ns

Detector Requirements:

- good momentum resolution ($B=1$ T)
- good vertex resolution (\rightarrow accidentals)
- good timing resolution (\rightarrow accidentals)

Courtesy: A. Schoening
Mu3e Experiment at PSI

Mu3e Schedule:
> 2012 prototyping
> 2014 construction
> 2015 first measurements (phase I)
> 2017 full experimental setup (phase II)

Mu3e Phase 2 sensitivity:

- Phase 2 requires installation of the proposed HiMB (High Intensity Muon Beamline) at PSI to provide muon rates $> 2 \cdot 10^9$ per second

Courtesy: A. Schoening
Mu2e at FNAL

- **Charged Lepton Flavor Violation:** Search for $\mu N \rightarrow eN$ at 6×10^{-17}
 - Quarks and neutrinos violate flavor: why don’t the charged leptons?
 - Uniquely sensitive to both SUSY and non-SUSY new physics
 - Complements LHC and probes mass scales to 10^4 TeV/c^2
 - A powerful discriminator among models

- **Prototyping of Detector and Tests of Superconducting Cable Underway**

- **Civil Construction** to start late 2014

- **Physics data-taking** to start early 2020 for 2-3 years

Courtesy: R. Bernstein
Mu2e Signal Sensitivity

Full G4 detector simulation, background overlay, reconstruction

<table>
<thead>
<tr>
<th>Source</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-proton capture</td>
<td>0.1 ± 0.06</td>
</tr>
<tr>
<td>Radiative π⁻ capture</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Beam electrons</td>
<td>0.001 ± 0.001</td>
</tr>
<tr>
<td>μ decay in orbit</td>
<td>0.2 ± 0.06</td>
</tr>
<tr>
<td>Cosmic ray induced</td>
<td>0.025 ± 0.025</td>
</tr>
<tr>
<td>μ decay in flight</td>
<td>0.01 ± 0.005</td>
</tr>
<tr>
<td>Total</td>
<td>0.4 ± 0.1</td>
</tr>
</tbody>
</table>

\[R_{\mu e} \text{ SES} = 2 \times 10^{-17} \]

Courtesy: R. Bernstein
COMET \((l < 10^{-14}; ll < 10^{-16})\)

Search for muon to electron conversion
Adopted staging approach
Phase-I: \(< 10^{-14}\)
Phase-II: \(< 10^{-16}\)
Budget for phase-I is approved!! to start the measurement in 2016.

DeeMe \((Br < 10^{-14})\)

Search for muon to electron conversion
Share H-Line at MLF with g-2/EDM
Partially funds from TRIUMF

J-PARC

Courtesy: N. Saito
Resonant Laser Ionization of Muonium ($\sim 10^6 \int \pm \text{ s}$)

Surface muon beam (28 MeV/c, $4 \times 10^8 /\text{s}$)
Muonium Production (300 K $\sim 25 \text{ meV}$)

Super Precision Magnetic Field (3T, ~1ppm local precision)

66 cm diameter

Simulated “Wiggle Plot” for This Experiment

$P_{\mu^+} = 100\%$, $N_{e^+} = 1.5 \times 10^{12}$
$\Delta \omega_a / \omega_a = 0.1 \text{ ppm}$

Courtesy: N. Saito
FNAL muon g-2 status

• Superconducting coils are now in Illinois, will arrive at Fermilab on Friday 26/7
• Building under construction
• Half the steel is at Fermilab

http://muon-g-2.fnal.gov/bigmove/

Unloading the barge in Lemont Illinois
Timeline

• Building completed 1/2014
• Remaining steel will arrive just after the building is complete
• Re-assembly will take between 12-18 months
• Ring together and powered early 2015
 – magnet shimming expected to take 6 to 12 months
• Beamline construction begins in 2015
• **Data collection 2016**
EDM Searches: Current Situation

- neutron \(d_n < 2.9 \times 10^{-26} \text{ e cm} \) PRL97(2006)131801
- Hg-199 \(d_{\text{Hg}} < 3.1 \times 10^{-29} \text{ e cm} \) PRL102(2009)101601
 \(\rightarrow d_p < 8 \times 10^{-25} \text{ e cm}^* \)
- Xe-129 \(d_{\text{Xe}} < 6 \times 10^{-27} \text{ e cm} \) PRL86(2001)22
- Tl-205 \(d_{\text{Tl}} < 9 \times 10^{-25} \text{ e cm} \) PRL88(2002)071805
 \(\rightarrow d_e < 1.6 \times 10^{-27} \text{ e cm}^* \)
- YbF \(d_e < 1.05 \times 10^{-27} \text{ e cm}^* \) Nature473(2011)493
- muon \(d_\mu < 1.8 \times 10^{-19} \text{ e cm} \) PRD80(2009)052008

* using the '1-miracle assumption', i.e. no cancelations with other CP-odd effects.

Only for one fundamental fermion, the muon, a direct EDM-limits exist.

Many people consider the neutron almost fundamental -- so we may perhaps count two direct basic EDM limits.

Pospelov, Ritz, Ann. Phys. 318(2005)119 for \(M_{\text{SUSY}} = 500 \text{GeV}, \tan \beta = 3 \)
Rough estimate of numbers of researchers, in total ~500 (with some overlap)

- Neutrons
 - @ILL
 - @ILL,@PNPI
 - @PSI
 - @FRM-2
 - @RCNP,@TRIUMF
 - @SNS
 - @J-PARC
 ~200

- Molecules
 - YbF@Imperial
 - PbO@Yale
 - ThO@Harvard
 - HfF+@JILA
 - WC@UMich
 - PbF@Oklahoma
 ~50

- Solids
 - GGG@Indiana
 - ferroelectrics@Yale
 ~10

- Ions-Muons
 - @BNL
 - @FZJ
 - @FNAL
 - @J-PARC
 ~200

- Atoms
 - Hg@UWash
 - Xe@Princeton
 - Xe@TokyoTech
 - Xe@TUM
 - Xe@Mainz
 - Cs@Penn
 - Cs@Texas
 - Fr@RCNP/CYRIC
 - Rn@TRIUMF
 - Ra@ANL
 - Ra@KVI
 - Yb@Kyoto
 ~100

• Rough estimate of numbers of researchers, in total ~500 (with some overlap)
In conclusion: experiments with unique reach

- cLFV with taus will be boosted with Belle-II and LHCb upgrade \(\rightarrow 10^{-9} \)
- cLFV with muons will see a major step forward in the next years @PSI, J-PARC, FNAL \(\rightarrow 5 \times 10^{-14}, 10^{-16}, 10^{-14} \ldots 18 \)
- muon g-2 will be improved @FNAL, J-PARC (need experiment and theory) \(\rightarrow 0.1 \text{ ppm} \)
- many EDM experiments around the world hold promise for improved sensitivities \(\rightarrow n < 5 \times 10^{-28} \text{ ecm}, e < 10^{-28} \text{ ecm}, H g < 5 \times 10^{-30} \text{ ecm}, p < 5 \times 10^{-29} \text{ ecm} \ldots \)

Need more work on consistent theoretical framework for relevant and more global comparisons of HE and LE
Backup
Origin of EDMs

- Origin of EDMs
- QCD
- TeV
- Fundamental CP-odd phases
- d_μ
- d_e
- C_{qe}, C_{qq}
- θ, d_q, d_q, w
- $g_{\pi NN}$
- Neutron & proton EDMs
- EDMs of nuclei and ions (deuteron, etc.)
- EDMs of paramagnetic atoms & molecules
 - Ti, Cs, YbF, PbO, ThO, HfF, WC
- EDMs of diamagnetic atoms
 - Hg, Xe, Ra, Rn
- Solid state EDM effects
 - GdIG, GdYIG, (EU, Ba)TiO$_3$

Adapted from:
Complex composite systems have constituents and interactions

Paramagnetic atoms

\[d_{\text{para}}(d_e) \sim 10 \alpha^2 Z^3 d_e \rightarrow d_{\text{Tl}} = -585d_e - 43 \text{ GeV} \times e \frac{C_s^{\text{singlet}}}{\alpha} \]

Paramagnetic molecules

additional enhancement from large internal electric fields of order 10 GV/cm or more, influenced by molecular level structure

Diamagnetic atoms

\[d_{\text{dia}} \sim 10Z^2 \left(\frac{R_N}{R_A} \right)^2 \tilde{d}_q \]

\[d_{\text{Hg}} = 7 \times 10^{-3} e (\tilde{d}_u - \tilde{d}_d) + 10^{-2} d_e + \mathcal{O}(C_S, C_{qq}) \]

enhancement factors possible due to atomic state mixing and nuclear deformation.
International context (nEDMs)

<table>
<thead>
<tr>
<th>Project</th>
<th>Goal (en e.cm)</th>
<th>Result expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>nEDM@PSI</td>
<td>$\sim 5 \times 10^{-27}$</td>
<td>2014</td>
</tr>
<tr>
<td>n2EDM@PSI</td>
<td>$\sim 5 \times 10^{-28}$</td>
<td>2014, 2020</td>
</tr>
<tr>
<td>PNPI@ILL</td>
<td>$\sim 1 \times 10^{-26}$</td>
<td>2014</td>
</tr>
<tr>
<td>CryoEDM@ILL</td>
<td>$\sim 3 \times 10^{-27}$</td>
<td>2016</td>
</tr>
<tr>
<td>nEDM@SNS</td>
<td>$\sim 3 \times 10^{-28}$</td>
<td>2020</td>
</tr>
<tr>
<td>nEDM@TRIUMF</td>
<td>$\sim 3 \times 10^{-27}$</td>
<td>2017, 2020</td>
</tr>
<tr>
<td>nEDM@TUM</td>
<td>$\sim 5 \times 10^{-28}$</td>
<td>2018</td>
</tr>
</tbody>
</table>
The SUSY CP problem
(for neutron and electron!)

\[d_n \approx 10^{-23} \, e \, cm \left(\frac{300 \, \text{GeV}/c^2}{M_{\text{SUSY}}} \right)^2 \sin \phi_{\text{SUSY}} \]

Why is \(\phi_{\text{SUSY}} \) so small?

(this is testing \(M \) already to 10TeV and you may also ask: why are the masses so huge?)

Pospelov, Ritz, Ann. Phys. 318(2005)119 for \(M_{\text{SUSY}} = 500 \text{GeV} \), \(\tan \beta = 3 \)
Complementarity with high energy:
Electroweak baryogenesis in MSSM

Cirigliano, Li, Profumo, Ramsey-Musolf

could eventually become completely excluded by LHC plus next generation nEDM

see: JHEP 1001:002,2010
Muon cLFV: Status

<table>
<thead>
<tr>
<th>Mode</th>
<th>Upper limit (90% C.L.)</th>
<th>Year</th>
<th>Exp./Lab.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+ \to e^+\gamma$</td>
<td>5.7×10^{-13}</td>
<td>2013</td>
<td>MEG / PSI</td>
</tr>
<tr>
<td>$\mu^+ \to e^+e^+e^-$</td>
<td>1.0×10^{-12}</td>
<td>1988</td>
<td>SINDRUM I / PSI</td>
</tr>
<tr>
<td>$\mu^+e^- \leftrightarrow \mu^-e^+$</td>
<td>8.3×10^{-11}</td>
<td>1999</td>
<td>PSI</td>
</tr>
<tr>
<td>$\mu^-Ti \to e^-Ti$</td>
<td>6.1×10^{-13}</td>
<td>1998</td>
<td>SINDRUM II / PSI</td>
</tr>
<tr>
<td>$\mu^-Ti \to e^+Ca^*$</td>
<td>3.6×10^{-11}</td>
<td>1998</td>
<td>SINDRUM II / PSI</td>
</tr>
<tr>
<td>$\mu^-Pb \to e^-Pb$</td>
<td>4.6×10^{-11}</td>
<td>1996</td>
<td>SINDRUM II / PSI</td>
</tr>
<tr>
<td>$\mu^-Au \to e^-Au$</td>
<td>7×10^{-13}</td>
<td>2006</td>
<td>SINDRUM II / PSI</td>
</tr>
</tbody>
</table>

Adapted from:
Raidal, van der Schaaf et al.,
Flavor physics of leptons and dipole moments,
Model Comparison ($\mu \rightarrow e\gamma$ and $\mu \rightarrow eee$)

Effective charge LFV Lagrangian ("toy" model) (Kuno and Okada)

\[L = \frac{m_\mu}{\Lambda^2 (1 + \kappa)} H_{\text{dipole}} + \frac{\kappa}{\Lambda^2 (1 + \kappa)} J_{\sigma}^{e\mu} J_{\sigma,ee} \]

\[\Lambda = \text{effective mass scale} \]
\[\kappa = \text{"parameter" of toy model} \]

\[\frac{BR(\mu^+ \rightarrow e^+ e^- e^+)}{BR(\mu^+ \rightarrow e^+ \gamma)} \sim 0.006 \]
μ→e Conversion

- ‘Dipole’ terms
 - i.e. SUSY
 - Also mediates μ→eγ
- ‘Contact’ terms
 - Direct coupling between quarks and leptons
 - Only accessible by μN→eN
- Effective Lagrangian
 - contact κ, mass scale Λ

\[L = \frac{m_\mu}{(\kappa + 1)\Lambda^2} \bar{\mu}R\sigma_{\mu\nu} e_L F_{\mu\nu} + \frac{\kappa}{(\kappa + 1)\Lambda^2} \bar{\mu}_L \gamma^\mu e_L \sum_{q=u,d} \bar{q}_L \gamma^\mu q_L \]

R. Bernstein
Table 4 Bounds at 90% CL on selected lepton flavor violating decays of pseudoscalar mesons

<table>
<thead>
<tr>
<th>Channel</th>
<th>Upper limit</th>
<th>Experiment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0 \rightarrow \mu^+e^-$</td>
<td>3.59×10^{-10}</td>
<td>KTeV</td>
<td>75</td>
</tr>
<tr>
<td>$\rho \rightarrow \mu^+e^-$</td>
<td>6×10^{-6}</td>
<td>Saturne SPES2</td>
<td>76</td>
</tr>
<tr>
<td>$K_L^0 \rightarrow \pi^0 \mu^+e^-$</td>
<td>7.56×10^{-11}</td>
<td>KTeV</td>
<td>75</td>
</tr>
<tr>
<td>$K_L^0 \rightarrow 2\pi^0 \mu^+e^-$</td>
<td>1.64×10^{-10}</td>
<td>KTeV</td>
<td>75</td>
</tr>
<tr>
<td>$K_L^0 \rightarrow \mu^+e^-$</td>
<td>4.7×10^{-12}</td>
<td>BNL E871</td>
<td>74</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\mu^+e^-$</td>
<td>1.3×10^{-11}</td>
<td>BNL E865, E777</td>
<td>73</td>
</tr>
<tr>
<td>$D^+ \rightarrow \pi^+\mu^+e^-$</td>
<td>3.4×10^{-5}</td>
<td>Fermilab E791</td>
<td>77</td>
</tr>
<tr>
<td>$D^+ \rightarrow K^+\mu^+e^-$</td>
<td>6.8×10^{-5}</td>
<td>Fermilab E791</td>
<td>77</td>
</tr>
<tr>
<td>$D^0 \rightarrow \mu^+e^-$</td>
<td>8.1×10^{-7}</td>
<td>BaBar</td>
<td>78</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow \pi^+\mu^+e^-$</td>
<td>6.1×10^{-4}</td>
<td>Fermilab E791</td>
<td>77</td>
</tr>
<tr>
<td>$D_s^+ \rightarrow K^+\mu^+e^-$</td>
<td>6.3×10^{-4}</td>
<td>Fermilab E791</td>
<td>77</td>
</tr>
<tr>
<td>$B^0 \rightarrow \mu^+e^-$</td>
<td>9.2×10^{-8}</td>
<td>BaBar (347 fb$^{-1}$)</td>
<td>79</td>
</tr>
<tr>
<td>$B^0 \rightarrow \tau^+e^-$</td>
<td>1.1×10^{-4}</td>
<td>CLEO (9.2 fb$^{-1}$)</td>
<td>80</td>
</tr>
<tr>
<td>$B^0 \rightarrow \tau^+\mu^-$</td>
<td>3.8×10^{-5}</td>
<td>CLEO (9.2 fb$^{-1}$)</td>
<td>80</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+e^+\mu^+$</td>
<td>9.1×10^{-8}</td>
<td>BaBar (208 fb$^{-1}$)</td>
<td>81</td>
</tr>
<tr>
<td>$B^+ \rightarrow K^+e^+\tau^+$</td>
<td>7.7×10^{-5}</td>
<td>BaBar (348 fb$^{-1}$)</td>
<td>82</td>
</tr>
<tr>
<td>$B_{s}^0 \rightarrow e^+\mu^+$</td>
<td>6.1×10^{-6}</td>
<td>CDF (102 pb$^{-1}$)</td>
<td>83</td>
</tr>
</tbody>
</table>
Searching for $\mu \rightarrow e\gamma$:

MEG collaboration

$< 5.7 \times 10^{-13}$ (90% CL)

PRL110(2013)201801

MEG upgrade aiming at $< 5 \times 10^{-14}$ sensitivity
Impact on NP Models
MEG
Detector performance and Data sample

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Resolution (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gamma Energy (%)</td>
<td>1.7 (depth > 2 cm), 2.4</td>
</tr>
<tr>
<td>Gamma Timing (psec)</td>
<td>67</td>
</tr>
<tr>
<td>Gamma Position (mm)</td>
<td>5 (u, v), 6 (w)</td>
</tr>
<tr>
<td>Gamma Efficiency (%)</td>
<td>63</td>
</tr>
<tr>
<td>Positron Momentum (KeV)</td>
<td>305 (core = 85%)</td>
</tr>
<tr>
<td>Positron Timing (psec)</td>
<td>108</td>
</tr>
<tr>
<td>Positron Angles (mrad)</td>
<td>7.5 (Φ), 10.6 (θ)</td>
</tr>
<tr>
<td>Positron Efficiency (%)</td>
<td>40</td>
</tr>
<tr>
<td>Gamma-Positron Timing (psec)</td>
<td>127</td>
</tr>
<tr>
<td>Muon decay point (mm)</td>
<td>1.9 (z), 1.3 (y)</td>
</tr>
</tbody>
</table>

Data statistics

<table>
<thead>
<tr>
<th>Year</th>
<th>Normalization-factor/10^12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
</tr>
<tr>
<td>2010</td>
<td>3</td>
</tr>
<tr>
<td>2011</td>
<td>4</td>
</tr>
<tr>
<td>2012</td>
<td>5</td>
</tr>
<tr>
<td>2013</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>μ stopped (10^14)</th>
<th>Sensitivity (10^-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009+10</td>
<td>1.75x10^{14}</td>
<td>1.3x10^{-12}</td>
</tr>
<tr>
<td>2011</td>
<td>1.85x10^{14}</td>
<td>1.1x10^{-12}</td>
</tr>
<tr>
<td>2009+10+11</td>
<td>3.60x10^{14}</td>
<td>7.7x10^{-13}</td>
</tr>
</tbody>
</table>

This result
Searching for $\mu \rightarrow eee$:

Mu3e collaboration

search for $\mu^+ \rightarrow e^+ e^- e^+$ with sensitivity $\sim 10^{-16}$ (PeV scale) using the most intense DC muon beam ($p \sim 28$ MeV/c) in the world

→ observe $\sim 10^{17}$ μ decays (over a reasonable time scale)

rate $\sim 2 \times 10^9$ μ decays / sec

→ build a detector capable of measuring 2×10^9 μ decays / sec

Staged approach:

first measurement 2015-17 aiming at 10^{-15}
Mu3e Baseline Design

search for $\mu^+ \rightarrow e^+ e^- e^+$ with sensitivity $\sim 10^{-16}$ (PeV scale) using the most intense DC muon beam ($p \sim 28 \text{ MeV}/c$) in the world → observe $\sim 10^{17} \mu$ decays (over a reasonable time scale) rate $\sim 2 \times 10^9 \mu$ decays / sec → build a detector capable of measuring $2 \times 10^9 \mu$ decays / sec

Mu3e Baseline Design

- 200 M HV-MAPS (Si pixels w/ embedded ampli.) channels
- $\sim 10^k$ ToF channels (SciFi and Tiles)

acceptance $\sim 70\%$ for $\mu \rightarrow eee$ decay (3 tracks!)

Phase I

surface μ
$p \sim 28 \text{ MeV}/c$
Backgrounds

irreducible backgrounds: accidental backgrounds

signal

\[\sum_i p_i = 0 \]
\[\sum_i E_i = m_\mu \]
\[\Delta t_{\text{tracks}} \sim 0 \]

irreducible backgrounds

accidental backgrounds

\[\text{BR}(\mu \rightarrow \text{eee} \nu \nu) = 3.4 \times 10^{-5} \]

to suppress backgrounds

precise kinematics (p and E_{\text{TOT}} resolution):
\[\Delta m_\mu < 0.5 \text{ MeV/c}^2 \]
precise timing (ToF): \[\Delta t \sim 100 \text{ ps} \]
precise vertexing: \[\Delta x \sim 0.1 \text{ mm} \]
Staged Approach

Phase IA
rate $\leq 10^7 \mu / s$

only central pixel

Phase IB
rate $\sim 10^8 \mu / s$

+ inner recurl sta.
+ time of flight

Phase II
rate $\sim 10^9 \mu / s$

+ outer recurl sta.
Next Generation Facilities & cLFV experiments

J-PARC JP

J-PARC cLFV $\mu \rightarrow e$ Conversion (Pulsed!)
Staged Expt:
(i) COMET (2019-2020) \(10^{11} \mu/s\)
(ii) PRIME/PRISM (>2020) \(10^{11-12} \mu/s\)

FNAL USA

FNAL cLFV $\mu \rightarrow e$ Conversion (Pulsed!)
Staged Expt:
(i) Mu2e (2019-2020) \(5 \cdot 10^{10} \mu/s\)
(ii) Project X Mu2e (>2022) \(2 \cdot 10^{12} \mu/s\)

HiMB@PSI

PSI cLFV $\mu \rightarrow e \gamma \mu \rightarrow 3e$ (DC)
Staged Expt:
(i) Mu3e I (2014-2017) \(\pi E 5 \Rightarrow 2 \cdot 10^8 \mu^+ /s\)
(ii) Mu3e II (>2017) SINO >10^{10} \mu^+ /s
PSI 2013

3rd Workshop on the Physics of Fundamental Symmetries and Interactions at low energies and the precision frontier

September 9–12, 2013
Paul Scherrer Institut, Switzerland

www.psi.ch/psi2013

Topics:
- Low energy precision tests of the Standard Model
- Fundamental physics with e, μ, n, p, nuclei, atoms
- Searches for symmetry violations
- Searches for new forces
- Precision measurements of fundamental constants
- Searches for permanent electric dipole moments
- Exotic atoms and molecules
- Precision magnetometry
- Advanced muon and ultracold neutron sources
- Advanced detector technologies

International Advisory Committee

D. Bryman
A. Czarnecki
B. W. Filipone
B. Heckel
C. Hofman
K. Jungmann
P. Kämmel
I. Khriplovich
V. A. Kostecky
Y. Kurio
W. J. Marciano
I. Moin
I. M. Pendleton
D. Pocanic
TRIUMF & UBC
Univ. Alberta
CALTECH
Univ. Washington
LANL
KVI
Univ. Washington
BINP
Indiana Univ.
Osaka Univ.
BNL
Univ. Tokyo
Univ. Sussex
Univ. Virginia

M. Pohl
L. Roberts
H. Shimizu
U. Straumann
A. Weis
E. Widmann
O. Zimmer
Univ. Geneva
Boston Univ.
Nagoya Univ. & KEK
Univ. Zürich
Univ. Fribourg
SMI
ILL

Organizing Committee

K. Kirch
D. Leuss
S. Rift
A. Van Loon-Goovaerts
ETHZ & PSI
PSI
PSI
PSI