Hadron production in pA collisions

T. Lappi

University of Jyväskylä, Finland

EPS-HEP 2013, Stockholm

Abstract

This talk discusses theory predictions for charged hadron production in pA collisions at LHC energies. In particular the emphasis is on the difference between models incorporating initial and final state effects on the production of (semi)hard particles.

Outline

Theory predictions in light of first pA data

- 2 Saturation & shadowing
- **3** Generators: HIJING, AMPT
- 4 Final state interactions
 - Discuss some theory predictions (not my own)
 - Exhaustive review impossible

The data; so far

Data available for this talk:

- $\frac{dN_{ch}}{d\eta}$ around midrapidity (ALICE)
- ► Nuclear modification factor R_{pA} ALICE

Lots of data not discussed here:

- Identified particles, dihadron correlations CMS
- Heavy flavor LHCB
- Jets ATLAS, CMS

Starting point: predictions at the Wuhan workshop, Oct 2012

J. L. Albacete et al., Int. J. Mod. Phys. E 22 (2013) 1330007

[arXiv:1301.3395 [hep-ph]].

Pseudorapidity density, energy dependence

\sqrt{s} -dependence

- 1st approximation: particle production like pp
- Fluctuations: is N_{part} right thing to do?

Pseudorapidity density, energy dependence

\sqrt{s} -dependence

- 1st approximation: particle production like pp
- Fluctuations: is N_{part} right thing to do?

- Given pp & AA data theory should do this pretty well
- Monte Carlos will improve with modest additional tuning

R_{pA} predictions/theories discussed here

Plot: ALICE R_{pA} paper

arXiv:1210.4520

Initial state Nucleus different from proton

- Saturation CGC: rcBK, IPsat
- ► Shadowing (~ saturation) EPS, HKN ...
- Event generators: HIJING, AMPT

Final state Medium effects after scattering

- ► Cold nuclear matter energy loss (~)
- Final state rescatterings AMPT...
- Hydrodynamics See talk by K. Werner

Saturation and shadowing

Two different frames:

IMF

- Nucleus made of partons
- DGLAP/BFKL: parton splitting
- For dense system (nucleus) also recombination (BK)

(I.e. parton density saturates)

TRF

- Nucleus target for H.E. probe
- ► P(scatter) ≤ 1 ⇒ upper limit on cross section
- (I.e. constituents shadow each other)

Observable consequences same in both pictures:

- Nucleus is less than A nucleons
- Effect increases with σ: small Q² and small x

"Shadowing" and "saturation" are descriptions of same physics; choice of term is strongly author-dependent.

CGC predictions for R_{pA}

Typical CGC-calculation for R_{pA} : k_T -factorization:

- Spectrum is convolution of unintegrated gluon distributions
- Olden days of RHIC: updf's à la Stetson
- Now: proton updf's used must fit HERA data
- Normalization corrected with "K-factor" (Cancels in R_{pA})

IPsat, rcBK, Rezaeian like this.

- ► "Theory error" mostly from: p updf ⇒ A updf; N_{ncoll}
- IPsat: more detailed b-dep.
 ⇒ smaller "theory error" (but different physics for Q², x-dependence)

7/12

CGC predictions for R_{pA}

Typical CGC-calculation for R_{pA} : k_T -factorization:

- Spectrum is convolution of unintegrated gluon distributions
- Olden days of RHIC: updf's à la Stetson
- Now: proton updf's used must fit HERA data
- Normalization corrected with "K-factor" (Cancels in R_{pA})

Compare with state of the art BK evolution in 2010:

Albacete, Marquet arXiv:1001:1378

only difference is nuclear geometry

Shadowing in R_{pA} , collinear approach

- Particle production from collinear integrated parton distributions
- Pdf's fit to nuclear data, DGLAP-evolved
- Also large x

• Basically works: $R_{pA} \rightarrow 1$

Shadowing in R_{pA} , collinear approach

- Particle production from collinear integrated parton distributions
- Pdf's fit to nuclear data, DGLAP-evolved
- Also large x

- Basically works: $R_{pA} \rightarrow 1$
- Real test of shadowing vs. CGC calculations will be y-dependence

R_{pA} from generators

R_{pA} from generators

CNM energy loss

CNM Energy loss calculation here Vitev \implies depletion @ high p_T

What loses energy is the incoming parton - not like jet quenching

CNM & coherence timescale:

- Coherence length $\ell \sim 1/(xm_N)$ (TRF)
- ▶ y = 0: for $p_T \lesssim 100$ GeV scattering coherent over whole nucleus.
- In CGC this is eikonal: parton from p does not lose energy
- CNM energy loss attempts to treat kinematics more exactly.

Multiparticle correlation data \implies hydro?

- "v₂" also from initial state effects, but:
- Hadron species dependence & v₃ point to collective final state effects
- ▶ Note: lower momenta than R_{pA}

CMS v₃ in pPb; hydro: Bozek

ALICE identified particle v2

Conclusion

Miscellaneous points:

- Big "theory errors" in CGC calculations from treatments of nuclear geometry; actual small-x theory is better than this!
- Event generators: need to do DGLAP properly for high p_T.
 (LHC kinematical reach in x, Q² is qualitatively different)
- CNM e-loss predicts R_{pA} slowly decreasing with p_T
- Semihard particle production data does not indicate final state effects: smaller p_T and correlations do.
- Forward rapidity data very important for initial state physics!