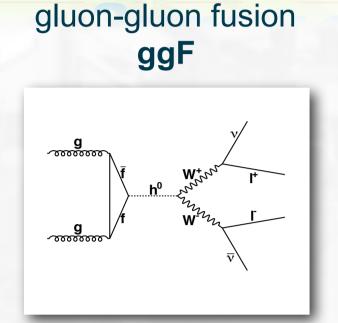
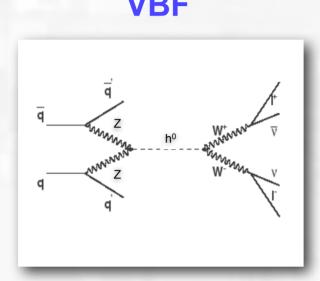
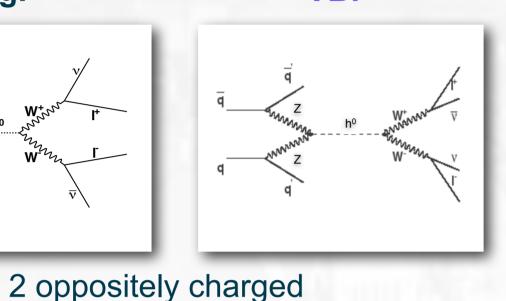


Measurement of the Higgs boson properties in WW^(*) di-lepton decay mode at ATLAS

EPS-HEP Stockholm, July 18th - 24th 2013


Introduction


- The evidence of a Higgs boson production in the $H \to WW^{(*)} \to \ell\nu\ell\nu$, $(\ell = e, \mu)$ decay mode is presented. Analysis is focused on the Standard Model Higgs boson with the mass of 125 GeV produced through the gluon-gluon (ggF) and vector-boson (VBF) fusion.
- Combined result with $H \to WW^{(*)} \to \ell\nu\ell\nu$, where Higgs boson is produced in association with a W or Z boson (where W and Z decay leptonically), is shown.


vector-boson fusion associated production

• The exclusion limits are set on the presence of a high-mass Higgs boson with the Standard Model production cross-section and couplings.

Signatures and expected rates

WH - 3 leptons ZH - 4 leptons

and large E_T^{miss} .

2 well separated jets

Experiment

The analyzed data are collected in p-p collissions at the center of mass energy of 7 TeV and 8 TeV using the ATLAS detector at the LHCEMS Datasets correspond to 20.7 fb-1 in 2012 and 4.6 fb-1 in 2011.

Final estimates and systematics

Event yields at 8 TeV for the signal of $m_H = 125 \text{ GeV}$

Background estimation:

- 1. W + jets, same-flavour Drell-Yan from data,
- 2. WW, top ($t\bar{t}$ +single t), $Z \to \tau\tau$ normalized to the data in control regions,
- 3. $W\gamma, W\gamma^*, WZ$
- from simulation and validated in data,
- 4. VBF di-boson and WW
- from simulation (difficult to construct pure CR)

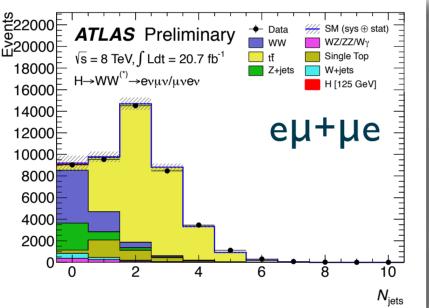
$N_{\rm jet}$	$N_{\rm obs}$	$N_{ m bkg}$	$N_{ m sig}$	N_{WW}	N_{VV}	$N_{tar{t}}$	N_t	N_{Z/γ^*}	$N_{W+ \mathrm{jets}}$
= 0	831	739 ± 39	97 ± 20	551 ± 41	58 ± 8	23 ± 3	16 ± 2	30 ± 10	61 ± 21
= 1	309	261 ± 28	40 ± 13	108 ± 40	27 ± 6	68 ± 18	27 ± 10	12 ± 6	20 ± 5
≥ 2	55	36 ± 4	10.6 ± 1.4	4.1 ± 1.5	1.9 ± 0.4	4.6 ± 1.7	0.8 ± 0.4	22 ± 3	0.7 ± 0.2

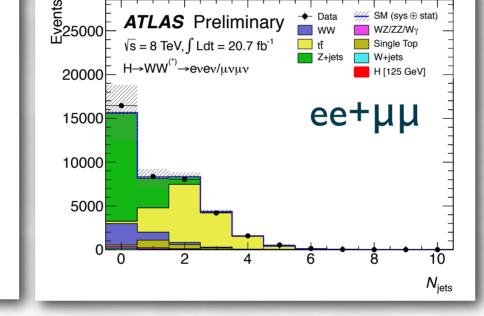
Observed events and expected yields after all selections in region $0.75 m_H < m_T < m_H$

 $120 \frac{1}{100} = 8 \text{ TeV}, \int Ldt = 20.7 \text{ fb}^{-1}$

Event selection

high- p_T leptons (e, μ) and large E_T^{miss} .


Analysis categories:

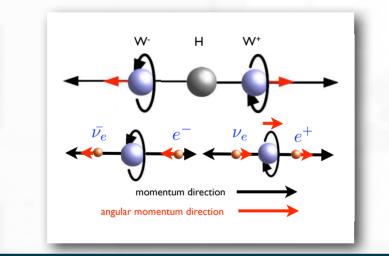

- 4 lepton flavour combinations: ee, µµ, eµ, µe
- 3 jet multiplicities: **0 jet, 1 jet** - ggF ≥ 2 jetss - VBF

Preselections

- Exactly 2 oppositely charged, well isolated leptons with $p_T >$ 25,15 GeV (W+jets,
- High relative E_T^{miss} and lower bound on m_{II} to reduce Drell-Yan and QCD background
- Veto events with the mil corresponding to the Z mass. H + 0 jet:
- High p_T to reduce Drell-Yan
- H + 1 jet: Veto b-jets reduce 75% of top
- ullet Veto Z
 ightarrow au au decays using a collinear approximation for m_{TT} H + 2 jets:
- H+1jet selections + selections on M_{jj} , ΔY_{jj} , central jet veto are applied to enhance the VBF topology.

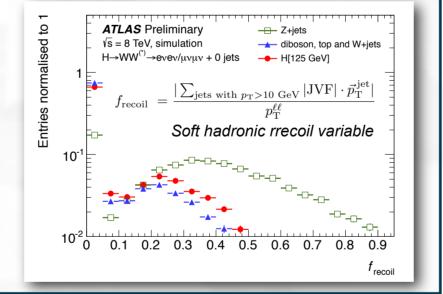
Background composition depends on the lepton flavour final state and number of jets

Poor mass resolution,


but high rate!

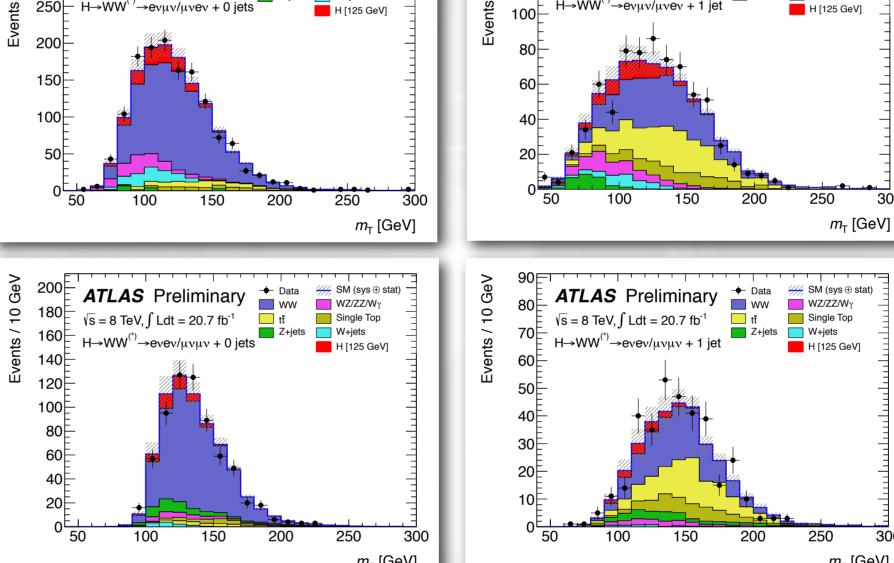
 $\sqrt{s} = 8 \text{TeV}^{\frac{3}{2}}$

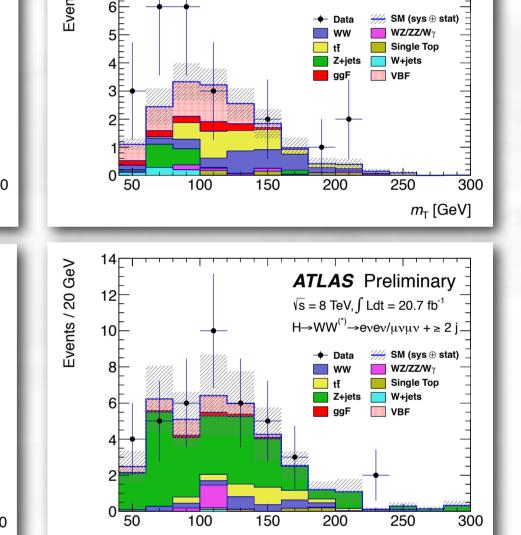
After preselections, dominant backgrounds in the eµ and µe channels come from top quark and WW, while in the ee and µµ come from Drell-Yan (in 0/1 jet cat.) and top (in 2 jet cat.)


Topological selection:

Exploit the angular correlations of the WW system to discriminate between pp→H→WW and other pp→WW production

Drell-Yan suppression: Apply cuts on:


- Rel. track-based $E_T^{miss.}$
- Soft hadronic recoil radiation opposite to the di-lepton (+jet) system



High mass search: Requires selection of higher p_T leptons. Higgs with m_H = 125 GeV is considered as background for this search and suppressed by m_{II} > 50 GeV selection.

Final discriminant - transverse mass

$$m_T^2 = \left(\sqrt{m_{\ell\ell}^2 + \vec{p}_{T_{\ell\ell}}^2} + E_T^{miss}\right)^2 - \left(\vec{p}_{T_{\ell\ell}} + \vec{E}_T^{miss}\right)^2$$

ATLAS Preliminary

 $\sqrt{s} = 8 \text{ TeV}, \int Ldt = 20.7 \text{ fb}^{-1}$

An excess of events over the expected background has been observed in data for a broad m_T range in all final states

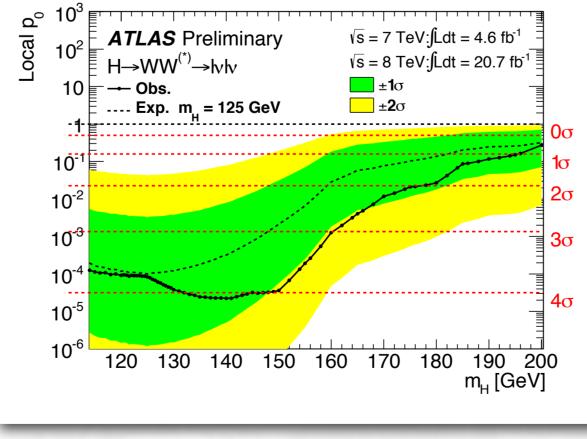
Leading uncertainties on the signal strength

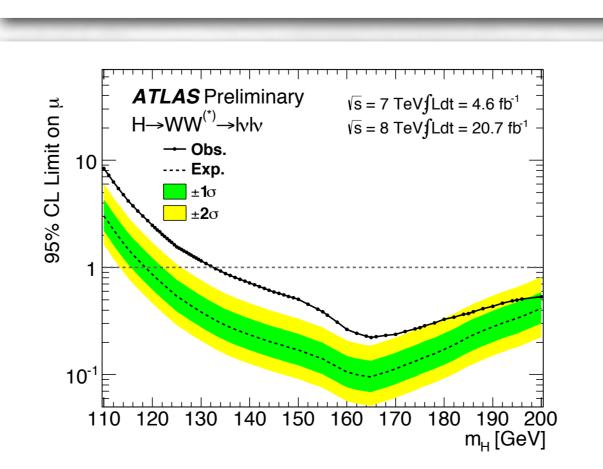
The breakdown of uncertainties on the signal strength:

- statistical: 21%
- theoretical syst.: experimental syst.:
- luminosity uncert.:

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

Results

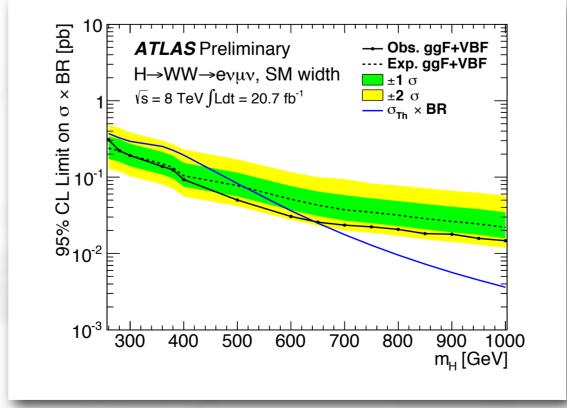

- The m_T spectra of events satisfying all selections are fit using the binned likelihood.
- Systematics parametrised by nuisance parameters.


Results for 7/8 TeV for $m_H = 115 - 200$ GeV

- The Higgs boson with the SM cross-section is excluded with 95% C.L. for m_H > 133 GeV (exclusion expected for $m_H > 119 \text{ GeV}$)
- Excess is observed for a wide m_H range, with local p_0 minimum at $m_H = 140$ GeV corresponding to 4.1σ significance.
- The observed signal significance at m_H = 125 GeV is 3.8σ (expected 3.7σ).
- The best fit signal strength at m_H = 125 GeV $\mu = 1.01 \pm 0.21_{\text{stat}} \pm 0.19_{\text{theo}} \pm 0.12_{\text{exp}} \pm 0.04_{\text{lumi}}$
- Measured cross section for 8 TeV and m_H = 125 GeV: $\sigma \times BR (WW^{(*)}) = 6.0 \pm 1.6 pb$

SM prediction: 4.8 ± 0.7 pb.

Results consistent with the Standard Model!

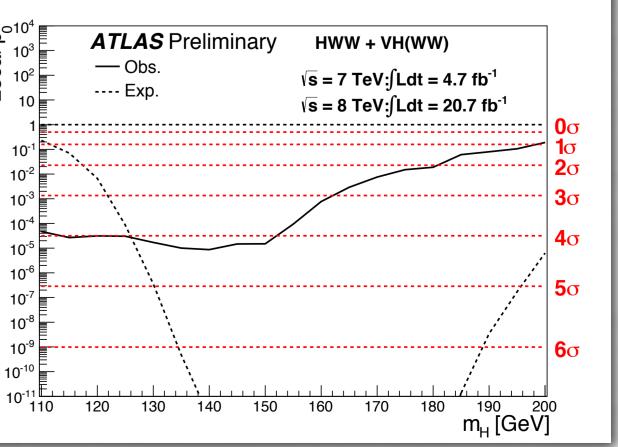


High-mass Higgs search (8TeV)

 95% CL exclusion limit on SM-like signal lineshape and couplings (ggF + VBF):

$260 \text{ GeV} < m_H < 642 \text{ GeV}$

• Exclusion limits on the $\sigma_{\alpha\alpha} = \times RR (WW^{(*)})$


Exclusion innits on the Oggr > Dr (VVVV)							
$W o \ell u, \; \ell$:							
m _H	300 GeV	600 GeV	1 TeV				
SM like [fb]	250	34	19				
N.W.A. ^{[1}] [fb]	230	32	29				
SM prediction (fb)	263	31	2				
[1] N.W.A Narrow Width Approximation							

Combination with VH (7+8 TeV)

 $H \to WW^{(*)} \to \ell \nu \ell \nu$ $WH \to WWW^{(*)} \to \ell\nu\ell\nu\ell\nu$ $ZH \to ZWW^{(*)} \to \ell\ell\ell\nu\ell\nu$

Expected and observed significance for m_H=125 GeV significance HWW HWW+VH 3.8 expected 0.7 2.0 4.0 observed

Local p₀-value as a function of m_H (HWW+VH)

