

# Search for the Standard Model Higgs boson produced in association with vector bosons and decaying to $b\overline{b}$ using the ATLAS detector



Manuel Proissl on behalf of the ATLAS collaboration University of Edinburgh

### INTRODUCTION

A new neutral boson decaying into pairs of photons and W or Z bosons with an invariant mass of ~ 125 GeV has been observed and requires confirmation of its coupling to fermions in order to determine whether it is the Standard Model (SM) Higgs boson. A vital observation would be its decay into b quark pairs, which has a predicted branching ratio of 58% for m<sub>H</sub> = 125 GeV. This poster presents an updated direct search with the ATLAS experiment for bb decays of the Standard Model Higgs boson produced in association with a W or Z boson using 4.7 and 20.3 fb<sup>-1</sup> of LHC proton-proton data at centre-of-mass energies of 7 and 8 TeV, respectively. The search is performed in the three decay modes  $ZH \rightarrow vvb\bar{b}$ ,  $WH \rightarrow lvb\bar{b}$  and  $ZH \rightarrow llb\bar{b}$  with l denoting either electrons or muons. No significant excess is observed. The observed (expected) 95% C.L. upper limit on the production cross section times the pp $\rightarrow$ (W/Z)(H $\rightarrow$ bb) branching ratio for m<sub>H</sub> = 125 GeV is found to be 1.4 (1.3) times the SM prediction. The diboson (W/Z)Z production with  $Z \rightarrow b\bar{b}$  is used to validate the analysis. The ratio of the observed Higgs (diboson) cross section to the SM expectation is found to be  $\mu = 0.2 \pm 0.5$  (stat.)  $\pm 0.4$  (syst.) ( $\mu_{VZ} = 0.9 \pm 0.2$ ).

### **EVENT SELECTION**

0 Lepton • E<sub>T</sub><sup>miss</sup> trigger

• The analysis is performed in events containing 0, 1 and 2 charged leptons targeting the vector boson (V) decay modes  $Z \rightarrow vv$ ,  $W \rightarrow lv$  and  $Z \rightarrow ll$ , respectively.

## **STATISTICAL TREATMENT**

• A binned likelihood function is constructed as the product of Poisson probability terms with inputs from the **2-tag signal** regions, **1-tag control** regions and the 2 Lepton eµ top control region.



■ E<sub>T</sub><sup>miss</sup> < 60 GeV</p>

#### Common

- At least 2 jets  $p_T^1 > 45$  GeV,  $p_{T}^{2}$ >20 GeV and  $|\eta|$ <2.5
- (Sub)Leading lepton  $p_T >$ 25 (10) GeV
- 2 b-<u>tagg</u>ed jets (70% eff.)



• Optimized cuts are applied in bins of the vector boson  $p_T$ and the number of jets to maximize the sensitivity.

| p <sub>T</sub> <sup>v</sup> bin (GeV) | 0-90    | 90-120  | 120-160 | 160-200 | >200 |
|---------------------------------------|---------|---------|---------|---------|------|
| ΔR(j,j)                               | 0.7-3.4 | 0.7-3.0 | 0.7-2.3 | 0.7-1.8 | <1.4 |

• Experimental (i.e. JES, b-tagging), background modelling and theoretical signal uncertainties affect normalizations and/or shapes of the  $m_{bb}$ , used as the main discriminating variable.



- Each source of systematic uncertainties is parameterised in the profile likelihood fit.
- **Common nuisance parameters** (NPs) across regions.
- Systematics on the extrapolation between background NPs
- The m<sub>bb</sub> shape and normalisation are extracted from 2-tag regions; only the normalisation is used in the 1-tag and top control regions.

### **BACKGROUND COMPOSITION**

• The dijet mass distributions for all signal (in  $Vp_T$  bins) and control (in  $Vp_T$  combined) regions after the profile likelihood "global fit". The signal included is for  $m_H = 125$  GeV.

|                          | 0 Lepton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Lepton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 Lepton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 300<br>250<br>200<br>150 | ATLAS PreliminaryData<br>PreliminaryATLAS PreliminaryData<br>VEDbb (best fit)<br>VEDbb (best fit) $is = 7 \text{ TeV } [Ldt = 4.7 \text{ fb}^{-1}]$ $is = 7 \text{ TeV } [Ldt = 4.7 \text{ fb}^{-1}]$ $V \text{ TeV } \text{ TeV }$ | $\frac{2}{500} = \frac{3500}{1000} = \frac{47LAS}{1000} \text{Freliminary}} = 4$ | $\frac{2}{10} = \frac{300}{10} = \frac{47LAS}{100} = \frac{47LAS}{100} = \frac{47LAS}{100} = \frac{120}{100} = 12$ |  |  |  |  |  |  |



The normalizations of V+jets and t are floating in the fit. For 7+8 TeV, the scale factors obtained are: t (1.13±0.05), Wb (0.89±0.15), Wcl (1.05±0.14), Zb (1.30±0.07) and Zcl (0.89±0.48). [stat.+syst.]

→ Data VH(bb) (best fit)

⊘Uncertainty VH(bb) (μ=1.0)

200

m<sub>bb</sub> [GeV]

250

150

100

# **DIBOSON OBSERVATION**



- The diboson (W/Z)Z production with  $Z \rightarrow b\overline{b}$  has a similar signature to VH with a ~5 times larger cross section and thus is used to validate the analysis procedure ("Diboson fit").
- The combined **diboson signal strength**  $\mu_{VZ} = 0.9 \pm 0.2$ agrees well with the SM expectation of  $\mu_{VZ} = 1$  with an observed (expected) significance of  $4.8\sigma$  ( $5.1\sigma$ ).

afte 9.0

ATLAS Preliminary

√s = 7 TeV [Ldt = 4.7 fb<sup>-1</sup>

Weighted by Higgs S/E

50

√s = 8 TeV [Ldt = 20.3 fb<sup>-1</sup>

0+1+2 lep., 2+3 jets, 2 tags

- → Data VH(bb) (best fit)

VZ Uncertainty VH(bb) (μ=1.0)

200

m<sub>bb</sub> [GeV]

150

100

250

# RESULTS

• The combined Higgs signal strength is  $\mu = 0.2 \pm 0.5$  (stat.)  $\pm 0.4$  (syst.) for  $m_H = 125$  GeV.

| <b>ATLAS</b> F<br>n <sub>н</sub> = 125 Ge | → σ(stat)<br>σ(sys)<br>σ(theo) |                      | ) | Total uncertainty<br>± 1σ on μ |   |              |   |      |       |   |   |
|-------------------------------------------|--------------------------------|----------------------|---|--------------------------------|---|--------------|---|------|-------|---|---|
| VH(bb), 7 T                               | $\mu = -2.1^{+1.4}_{-1.4}$     | ±1.1<br>±0.9<br>±0.2 |   | -                              |   |              |   | **** |       |   |   |
| VH, 0 lepton                              | $\mu = -2.7^{+2.2}_{-1.9}$     | ±1.8                 |   |                                |   |              |   |      | :     | : |   |
| VH, 1 lepton                              | $\mu = -2.5_{-1.9}^{+2.0}$     | ±1.6                 | - |                                |   |              |   |      |       | - |   |
| VH, 2 leptons                             | $\mu = 0.6^{+4.0}_{-3.6}$      | ±3.1                 |   |                                | - | 1000<br>1000 |   |      | ; ; ; |   |   |
| VH(bb), 8 T                               | $\mu = 0.6_{-0.7}^{+0.7}$      | ±0.5<br>±0.4<br><0.1 |   |                                |   |              | - |      |       |   |   |
| VH, 0 lepton                              | $\mu = 0.9^{+1.0}_{-0.9}$      | ±0.8                 |   |                                |   | :            |   |      | :     |   | : |
| VH, 1 lepton                              | $\mu = 0.7^{+1.1}_{-1.1}$      | ±0.8                 |   |                                |   |              | - | +-   |       |   |   |
| VH, 2 leptons                             | $\mu = -0.3^{+1.5}$            | ±1.2                 |   |                                |   | -            |   |      | :     | : | : |

The observed (expected) limit is 1.4 (1.3) times the SM expectation.





- Higgs boson fit: the m<sub>bb</sub> after subtraction of all backgrounds except for diboson and VH productions is shown.
- The diboson peak is clearly seen, located at the Z mass.

# CONCLUSION

New results on associated SM Higgs production using the full 7 TeV and 8 TeV datasets are presented. The analysis achieved a ~35% gain in significance beyond the increased integrated luminosity. No significant excess is observed. The diboson observation is consistent with the SM expectation with a 4.8 certain excess over the background-only hypothesis. The ratio of the measured Higgs boson signal strength to the SM expectation is  $\mu = 0.2 \pm 0.5$  (stat.)  $\pm 0.4$  (syst.).

₩300

<sup>ш</sup>200

50



• In the absence of signal the  $p_0$  value is 0.36 and in the presence of a SM Higgs boson the expected p value is 0.05.

2.0 (3.3)

1.9 (1.3)

The 95% C.L. upper limits: 2σ deficit in 7 TeV data also observed in previous analysis, leading to a small excess in the combined result; an  $\sim 1\sigma$  excess is observed in 8 TeV data.



Conference note: ATLAS-CONF-2013-079