Borexino: recent solar and terrestrial neutrino results and description of the SOX project - Short Distance Neutrino Oscillations with Borexino

Gioacchino Ranucci INFN MI

On behalf of the Borexino Collaboration

Stockholm – EPS HEP 20/7/2013

Solar Neutrinos

pp Chain

CNO Cycle

(contributes ~1% of solar energy)

Solar neutrino spectrum

predicted by the Standard Solar Model (SSM)

Surface metallicity puzzle still open...

Many accomplishments of Borexino in the solar neutrino arena and beyond...

Borexino at Gran Sasso: low energy real time

detection

Stainless Steel Sphere:

2212 photomultipliers 1350 m³

Scintillator:

270 t PC+PPO in a 150 μm

thick nylon vessel

Nylon vessels:

Inner: 4.25 m

Outer: 5.50 m

Neutrino electron scattering

 $ve \rightarrow ve$

Design based on the principle of graded shielding

Water Tank:

 γ and n shield μ water Č detector 208 PMTs in water 2100 m³

<u>20 legs</u>

Carbon steel plates

Detection principle

$$V_{\chi} + e \rightarrow V_{\chi} + e$$

Elastic scattering off the electron of the scintillator threshold at ~ 60 keV (electron energy)

Goals: (in read already accomplished) ⁷Be flux (862 keV), ⁸B with a lower threshold down to 2.2 MeV, pep (1.44 MeV), possibly pp and CNO in the future, Geo-antineutrinos (Phys.Lett.687,2010), Supernovae neutrinos, all requiring ultra-low background especially the solar measurements – the big challenge of the experiment!

Further proposed measurements with ν and $\overline{\nu}$ artificial sources for sterile neutrino search (second part of the talk)

Results made possible by

a) Ultra-low background

- b) Thorough calibration of the detector with internal and external sources
- c) A detailed MC able to reproduce accurately the calibration results
- d) High statistics

Extraction of the fluxes through a data-to-model fit

Radio-Isotope		Concentration or Flux		Strategy for Re	Final		
Name	Source	Typical	Required	Hardware	Software	Achieved	
μ	cosmic	~ 200 s ⁻¹ m ⁻² @ sea level	<10 ⁻¹⁰ S ⁻¹ m ⁻²	underground water detector	Cerenkov PS analysis	< 10 ⁻¹⁰ eff. > 0.9992	
γ	rock			water	fid. vol.	negligible	
γ	PMTs, SSS			buffer	fid. vol.	negligible	
14C	intrinsic PC	~10 ⁻¹² g/g	~10 ⁻¹⁸ g/g	selection	threshold	~ 2 10 ⁻¹⁸ g/g	
238U 232 Th	dust, metallic	10 ⁻⁵ -10 ⁻⁶ g/g	<10 ⁻¹⁶ g/g	distillation, W.E., filtration, mat. selection, cleanliness	tagging, α/β	(1.67±0.06)10 ⁻¹⁷ g/g (4.6±0.8)10 ⁻¹⁸ g/g	
7Be	cosmogenic	~3 10 ⁻² Bq/t	<10 ⁻⁶ Bq/t	distillation		not seen	
⁴⁰ K	dust, PPO	~2. 10 ⁻⁶ g/g (dust)	<10 ⁻¹⁸ g/g	distillation,W.E.		not seen	
210 p o	surface cont. from ²²² Rn		<1 c/d/t	distillation, W.E., filtration, cleanliness	fit	May '07: 70 c/d/t Jan '10: ~1 c/d/t	
²²² Rn	emanation from materials, rock	10 Bq/l air, water 100-1000 Bq rock	<10 cpd 100 t	N ₂ stripping cleanliness	tagging。 α/β	<1 cpd 100 t	
³⁹ Ar	air, cosmogenic	17 mBq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	<< 85 K r	
85 K r	air, nuclear weapons	- 1 Bq/m ³ (air)	< 1 cpd 100 t	N ₂ stripping	fit	30 ± 5 cpd/100 t	

Low energy range (0.14-2 MeV) calibration

Energy scale-Resolution

$$\frac{5\%}{\sqrt{E}}$$
 from 200 keV to 2 MeV

Beyond 2 MeV: A little worse due to the less accuracy in the calibration

- @ MC tuned on γ source results
- @ Determination of Light yield and of the Birks parameter k_B L.Y. \longrightarrow obtained from the γ calibration sources with MC: 511 p.e./MeV left as free parameter in the total fit in the analytical approach
- @ Precision of the energy scale global determination: 1.5% (1 σ)
- @ Fiducial volume uncertainty: $\begin{vmatrix} +0.5 \\ -1.3 \end{vmatrix}$ (1 σ)

Stockholm 20-7- 2013

Energy [keV]

Result

⁷Be(0.862): 46±1.5 (stat.)
$$\begin{vmatrix} +1.5 \\ -1.6 \end{vmatrix}$$
 (syst)cpd/100 tons

Corresponding to an equivalent v_e flux of (2.78 ± 0.13) x 10^9 cm⁻²s⁻¹ By assuming the MSW-LMA solution the absolute ⁷Be solar neutrino flux measure is $(4.84\pm0.24) \times 10^9$ cm⁻²s⁻¹

The ratio of our measurement to the SSM prediction is $fBe=0.97\pm0.09$

Other main components in the fit $^{85}{\rm Kr}~ 28.0 \pm 2.1_{\rm stat} \pm 4.7_{\rm syst}$ $^{210}{\rm Bi}~ 40.3 \pm 1.5_{\rm stat} \pm 2.3_{\rm syst}$ $^{11}{\rm C}~ 28.5 \pm 0.2_{\rm stat} \pm 0.7_{\rm syst}$

⁸⁵Kr in very good agreement with the correlated coincidence determination

Unprecedented better than 5% precision in low energy solar neutrino measurements

Associate result zero day night asymmetry – as expected

FIRST DETECTION of PEP neutrinos

- Borexino obtained first evidence of pep neutrinos
 - Thanks to the very low background and analysis tools developed for ¹¹C rejection
 - Three fold coincidence tagging of ¹¹C events
 - β+ β separation exploiting positronium induced pulse shape distortion
 - Multivariate maximum likelihood test using all available information

Three-fold coincidence

FIRST DETECTION of PEP neutrinos

- Rate: $3.1 \pm 0.6_{(stat)} \pm 0.3_{(sys)}$ cpd/100 t
- No oscillations excluded at 97% c.l.
- Absence of pep solar v excluded at 98% c.l.

- Assuming MSW-LMA:
 - $\Phi_{pep} = 1.6 \pm 0.3 \cdot 10^8 \text{ cm}^{-2} \text{ s}^{-1}$
- CNO limit obtained <u>assuming pep @ SSM</u>;
 - CNO rate < 7.1 cpd/100 t (95% c.l.)
 (1.5 times the SSM prediction)

⁸B with lower threshold at 3 MeV

Exp. ⁸B spectrum vs models

Data compatible with both high metallicity and low metallicity models

Systematic errors

Source	E>3 MeV		E>5 MeV	
	σ_+	σ_{-}	σ_{+}	σ_{-}
Energy threshold	3.6%	3.2%	6.1%	4.8%
Fiducial mass	3.8%	3.8%	3.8%	3.8%
Energy resolution	0.0%	2.5%	0.0%	3.0%
Total	5.2%	5.6%	7.2%	6.8%

Threshold [MeV] SuperKamiokaNDE I [7] 5.0 SuperKamiokaNDE II [2] 7.0 SNO D₂O [3] 5.0 SNO Salt Phase [26] 5.5 SNO Prop. Counter [27] 6.0 Borexino 3.0 $2.4\pm0.4\pm0.1$ Borexino 5.0 $2.7\pm0.4\pm0.2$

> SSM; H.M.(2.7±0.3) x10⁶cm⁻²s⁻¹ L.M. $(2.2 \pm 0.2) \times 10^6 \text{cm}^{-2}\text{s}^{-1}$

Phys. Rev. D, 82 (2010) 033006

BOREXINO VALIDATION AT LOW ENERGY OF THE LMA MSW OSCILLATION PARADIGM

Before Borexino

Borexino 2012

Additional program (Phase 2: 2012-2015) after 1 year and a half of successful purification which reduced further the backgrounds

- Improve ⁷Be, ⁸B → more test of MSW at Low energy probe of non standard physics (NSI) in the transition region of the Pee curve
- Confirm pep with stronger significance and reduced error
- Improve upper limit on CNO → probe metallicity (perhaps)
- Attempt direct pp measurement

Annual modulation of the ν signal (PHASE 1): Lomb Scargle analysis

Peak at 1 year period

Frequency [1/year]

Preliminary results for phase II – unambiguous independent proof that we are observing solar v's

New geov results: evidence of the signal

N reactor Expected with osc.	N reactor Expected no osc.	Others back.	N _{geo} measured	N _{reactor}	N _{geo} measured	N reactor measured
events	Events	events	events	events	TNU	TNU
33.3±2.4	60.4±2.4	0.70±0.18	14.3±4.4	31.2 _{-6.1} +7	38.8±12.0	84.5 ^{+19.3} -16.9
Unbin	ned likelihoo	d fit		No geov sig	gnal: rejected	l at 4.5 σ C.L.

 $TNU = Terrestrial Neutrino Unit = 1 event / year / <math>10^{32}$ protons

Stockholm 20-7- 2013

SOX: Short distance v_e Oscillations with BoreXino

Science

- Motivations
 - Search for sterile neutrinos or other short distance effects on Pee

and also

- Measurement of ϑ_W at low energy (~ 1 MeV)
- Improved limit on neutrino magnetic moment
- Measurement of g_V e g_A at low energy
- Constraints on neutrino NSI

Technology

- Neutrino source: 51Cr
- Anti-neutrino source: 144Ce

Project

- SOX-A 51Cr external
- SOX-B 144Ce external
- SOX-C 144Ce internal

Funded by the European Research Council with an ERC advanced grant amounting to 3.5 Meuros

SOX is the "European" official project acronym

SOX: the Science case

 "anomalies": a few experiments deviate from the standard 3-flavor mixing at L/E ~ 1 m/MeV

LSND 2001

- Clear excess: 87.9 ± 22.4 ± 6.0 (3.8 σ)
- Partially confirmed by MiniBoone
- Allowed region restricted by ICARUS to
 Δm² 1 eV² (see Eur. Phys. J. C (2013) 73:2345

- deficit in observed flux at short distances
- $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-}$

C. Giunti et al. arxiv:1210.5715 (hep-ph)

"LSND anomaly surviving area

90% CL (this work)

 10^2

10¹

10⁰

 10^{-1}

 10^{-2}

 $\Delta m^2 [eV^2]$

$\overline{G1}$ $\overline{G2}$

NOMAD

SuperK 90 / 99 %

Gallium Anomaly

SOX: Three Phases

Mission: test the existence of low L/E
 v_e and/or √_e anomalies by placing
 well known artificial sources close to
 or inside Borexino

SOX-A

- 51Cr source in pit beneath detector
- 8.25 m from center [within 2015]

SOX-B

- 144Ce-144Pr source in W.T.
- PPO everywhere to enhance sensitivity
- 7.15 m from center [2015/2016]

SOX-C

- ¹⁴⁴Ce-¹⁴⁴Pr source in the center
- Only after the end of solar program
- More effort and more time [>2017]

Artificial neutrino sources

Source	Production	т (days)	Decay mode	Energy [MeV]	Mass [kg/MCi]	Heat [W/kCi]
⁵¹ Cr Ve	Neutron irradiation of 50 Cr in reactor $\Phi_n \gtrsim 5.~10^{14}~cm^{-2}~s^{-1}$	40	EC γ 320 keV (10%)	0.746	1.1	0.19
¹⁴⁴ Ce- ¹⁴⁴ Pr V e	Chemical extraction from spent nuclear fuel	411	β-	<2.9975	0.314	7.6

39.96 d

The tunnel beneath the detector

Data analysis: two techniques

- Total counts: standard "disappearance" experiment
 - Total number of events depends on θ₁₄ and (weakly) from Δm²₁₄
 - Sensitivity depends on:
 - Statistics (source activity and active volume)
 - Error on activity (in particular) and on efficiency
 - The relatively short life-time of 51Cr yield useful time-events correlation
 - The background is constant while the signal is not
- Spatial waves [C.. Grieb et al., Phys. Rev. D75: 093006 (2007)]
 - With expected Δm² e and ~ 1 MeV energy, the wavelength is smaller than detector size (~11 m max) and bigger than resolution (~ 15 cm)
 - The distribution of events as a function of distance to source shows waves
 - Oscillometry analysis \rightarrow Direct measurement of Δm_{14}^2 and θ_{14}
 - Very powerful and independent. Does not depend on knowledge of source activity.
- The two techniques can be combined in a single counts-waves fit

Geometry with external source

Volume:

$$V(l) = 2\pi l^2 \left(1 - \frac{d^2 - R^2 + l^2}{2 d l} \right)$$

Flux and decay

$$\Phi(l) = \frac{I_0}{4\pi l^2} \tau e^{-\frac{t_D}{\tau}} \left(1 - e^{-\frac{t}{\tau}} \right)$$

Oscillations (one sterile)

$$\mathbf{P_{ee}} = \mathbf{1.} - \mathbf{sin^2(2 heta_s)} \cdot \mathbf{sin^2} \left(rac{1.27 \; \mathbf{\Delta m^2 \; l}}{\mathrm{E}}
ight)$$

 The number of v_e-e⁻ events at distance I from the source, with detection threshold T₁ and maximum recoil energy T₂:

$$\mathbf{N_0}(\mathbf{l},\mathbf{T_1},\mathbf{T_2}) = \mathbf{n_e} \ \Phi(\mathbf{l}) \ \mathbf{V}(\mathbf{l}) \ \mathbf{P_{ee}}(\mathbf{l},\mathbf{E}) \int_{\mathbf{T_1}}^{\mathbf{T_2}} \frac{\mathbf{d}\sigma_{\mathbf{e}}(\mathbf{E},\mathbf{T})}{\mathbf{d}\mathbf{T}} \mathbf{d}\mathbf{T}$$

N.B.: The distribution of events is not uniform even without oscillations

Example for SOX-A

- Waves may be detected in the distribution of events as a function of the distance from source
 - With waves, both parameters can be measure

Waves with \overline{v}_e and space-energy correlation

Space - Energy correlation

 With the ¹⁴⁴Ce-¹⁴⁴Pr source (both external SOX-B and internal SOX-C) global fit exploiting correlation between reconstructed event position and positron energy

More examples of space-energy patterns for ¹⁴⁴Ce-¹⁴⁴Pr

SOX-A:

- 51Cr source at
 8.25 m from the
 center
- •10 MCi
- 1% precision in source activity
- 1% in FV determination

- Phase A can happen any time during next solar neutrino phase
 - 2014/15 is realistic 3 months of data taking

SOX-B

144Ce-144Pr source a
 7.15 m from the center (in water tank

• 75 kCi

1.5% precision in source activity

 2% bin-to-bin error to include all effects

- SOX-B can happen any time during next solar neutrino phase
 - 2015/16 is a realistic scenario 1.5 years of data taking

Reactor+Ga

SOX-C:

• 144Ce-144Pr source in the center

• 75 kCi

- 1.5% precision in source activity
- 2% bin-to-bin error to include other systematic

- SOX-C can happen only after the end of solar neutrino phase
 - 2017-2018 is in principle possible 1.5 years of data taking
 - decision to be taken after SOX-A and/or SOX-B results

Reactor+Ga

Other low energy neutrino physics

CHARM II (1994)

vu ES su e- E ~ 10 GeV

- With both sources (SOX-A and B or C)
 - Independent measurement of gv e ga
 - Test of SM EW running at very low energy
 - Standard Model

•
$$g_V = -1/2 + 2 \sin^2 \theta_W = -0.038$$

•
$$g_a = -1/2 = 0.5$$

$$g_V^{\nu e} = -0.035 \pm 0.012(\text{stat}) \pm 0.012(\text{syst}),$$

 $g_A^{\nu e} = -0.503 \pm 0.006(\text{stat}) \pm 0.016(\text{syst}).$

Technology of the ⁵¹Cr source

- Concept is the same as in Gallex 1994.
 - -36 kg, 5°Cr enriched at 38% irradiated in a high neutron flux reactor (we may use more material)
 - 190 W/MCi from photons
 - -few μSv/h on surface (required < 100)
- BUT: careful thermal design to handle 10 MCi (2 kW)
 - Preliminary studies are encouraging

External T must be acceptable

Current value: T=73°C

Internal T must be below syntherization (750°C) Current value: T=365 °C

Precise determination of the source activity

The technological effort encompasses also the precise determination of the source activity

For 51 Cr particularly important at relatively high $\Delta m^2 > 2 \text{ eV}^2$ where the measure relies essentially on the disappearance effect

Not important in the region where the oscillometric measurement dominates the sensitivity

- In situ calorimetric measurement calorimeter coupled to the source during the measurement period
- Gamma scanning at the reactor just after irradiation
- Post-decay ⁵¹V determination

Detail of the source deployment procedure in the tunnel through the clean room

SOX-C: ¹⁴⁴Ce source inside detector

- Very massive source
 - ~ 4 t of shielding
 - Source: spent nuclear fuel from Russia
- DENSIMET (W) shielding plus ultra-pure copper layer to reduce background
 - W is very dirty for Borexino
 - γ background is a problem if rate too high.
 - random coincidences make background
- Source deployment to be studied
 - Either from the top or from the bottom
 - PPO everywhere in the SSS to enlarge active volume (active radius up to 5.5 m)
 - New anti-neutrino trigger
 - Trigger on singles would be too hard, but this is not a problem
 - > 2017 for deployment in within the scintillator

Conclusions I

Borexino has completed with great success the first round of solar and geo measurements thanks to the unprecedented purity achieved in the liquid scintillator

- ⁷Be with unmatched 5% precision
- B with a threshold as low as 3 MeV and first experimental specific detection of the pep component
- Overall and unique to date direct confirmation at low energy of the MSW-LMA oscillation solution
- Clean and convincing geo-neutrino signal detection

A new round of measurement has been started (phase II) after a purification effort which further suppressed the contaminants in the scintillator

- Complete solar neutrino spectroscopy with improved precision, possible probe of new physics in the transition region, depending upon the reached precision
- Further improved geo-neutrino results

Conclusions II

Source experiment to test the sterile neutrino hypothesis

- Neutrino Source Cr-51 SOX A within phase 2
- Anti-neutrino source Ce-144 in water SOX B appendix to phase 2
- Anti-neutrino source Ce-144 in tehe center possibly beyond 2017