EPS HEP 2013

19 July 2013, Stockholm

LHC Searches Examined via the RPV MSSM

Yevgeny Kats

New High Energy Theory Center Rutgers University

References

Higgsino production (w/Jared Evans) to be released soon

Stop production (w/Jared Evans)

arXiv:1209.0764 [JHEP 1304 (2013) 028] now updated with 8 TeV searches ←

Gluino production (w/Jared Evans, David Shih, Matt Strassler) - to be released soon

Motivation

THEORY

SUSY can stabilize the electroweak (EW) scale. Expect:

- Higgsinos near EW scale
- 3rd generation squarks and gluinos not much heavier

Which such models are still allowed?

Motivation

THEORY

SUSY can stabilize the electroweak (EW) scale. Expect:

- Higgsinos near EW scale
- 3rd generation squarks and gluinos not much heavier

Which such models are still allowed?

EXPERIMENT

Unclear from theory how new physics will manifest itself. Cover all classes of final states, regardless of theory motivation.

Which final states are not yet well-covered?

How can they be addressed?

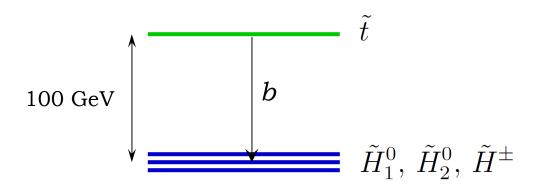
Motivation

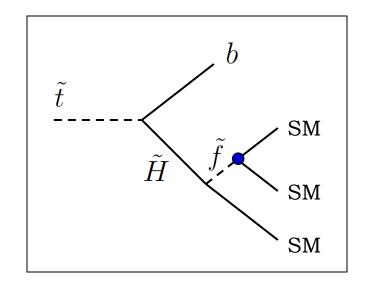
THEORY

SUSY can stabilize the electroweak (EW) scale. Expect:

- Higgsinos near EW scale
- 3rd generation squarks and gluinos not much heavier

Which such models are still allowed?


EXPERIMENT


Unclear from theory how new physics will manifest itself. Cover all classes of final states, regardless of theory motivation.

Which final states are not yet well-covered? How can they be addressed?

Why R-parity violation (RPV)?

- RPC SUSY already well-covered. RPV may still contain surprises!
- Freedom in RPV couplings → Many interesting benchmark models

Production

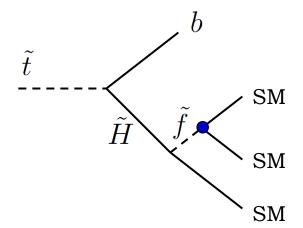
$$pp \rightarrow t t^*$$

Stop decay
$$\tilde{t}
ightarrow b \, \tilde{H}^+$$

Higgsino (chargino) decay

 \circ Case 1: $\tilde{H}^+ \to W^{+*} \tilde{H}_1^0$, $\tilde{H}_1^0 \to \mathrm{RPV}$ $W^{+*} \rightarrow \text{soft particles (unobservable)}$

Stop and antistop can give same-sign leptons


 \circ Case 2: $\tilde{H}^+ \to \mathrm{RPV}$

For simplicity, the sfermion mediator \tilde{f} assumed off-shell.

Scenario		Final state (for each stop)		
• Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \ \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq,\ \nu tbq$
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
hoLQD	202	$ ilde{b}_L$	νbbq	u t b q
	233	\widetilde{t}_L	μtbb	μbbb
		$ ilde{b}_L$	νbbb	u t b b
	332	$ ilde{t}_L$	au t b q	au bbq
		$ ilde{b}_L$	νbbq	u t b q
	333	$ ilde{t}_L$	au tbb	au bbb
	000	$ ilde{b}_L$	νbbb	u t b b
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

In each simplified model:

- Single RPV coupling is on
- Single mediator contributes (see example in backup slides)

<u>Case 1</u>:

$$ilde{H}^+ o W^{+*} ilde{H}^0_1$$
 $ilde{H}^0_1 o \mathrm{RPV}$ Stop and antistop can give same-sign leptons

<u>Case 2</u>:

$$\tilde{H}^+ \to \mathrm{RPV}$$

Scenario		Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \ \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	τbqq	τbqq
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq, \nu tbq$
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	τbbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
LQD		$ ilde{b}_L$	u bbq	u t b q
	233	$ ilde{t}_L$	μtbb	μbbb
		$ ilde{b}_L$	νbbb	u t b b
	332	$ ilde{t}_L$	τtbq	au bbq
		$ ilde{b}_L$	u bbq	u t b q
	333	$ ilde{t}_L$	(τtbb)	τbbb
	000	$ ilde{b}_L$	νbbb	u t b b
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	\widetilde{t}_R	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

- MET only from tops or τ or essentially no MET
- Taus, but not e or μ or no leptons at all

Scenario			Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \ \nu tbq$	
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq,\ \nu tbq$	
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
	232	$ ilde{t}_L$	μtbq	μbbq	
LQD	202	\widetilde{b}_L	νbbq	u t b q	
	233	$ ilde{t}_L$	μtbb	μbbb	
		$ ilde{b}_L$	νbbb	u t b b	
	332	\widetilde{t}_L	au t b q	au bbq	
		$ ilde{b}_L$	νbbq	u t b q	
	333	$ ilde{t}_L$	au tbb	au bbb	
	333	$ ilde{b}_L$	νbbb	u t b b	
	213	$ ilde{b}_R$	bbqq	tbqq	
UDD	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

- $\begin{tabular}{ll} \bullet & \mbox{MET only from tops or } \tau \\ \begin{tabular}{ll} \bullet & \mbox{or essentially no MET} \\ \end{tabular}$
- Taus, but not e or μ or no leptons at all

Scenario		Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \ \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	τbqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq,\ \nu tbq$
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	τbbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
LQD	202	\tilde{b}_L	νbbq	u t b q
	233	$ ilde{t}_L$	μtbb	μbbb
		$ ilde{b}_L$	νbbb	u t b b
	332	$ ilde{t}_L$	au t b q	au bbq
		$ ilde{b}_L$	νbbq	u t b q
	333	$ ilde{t}_L$	au tbb	(τbbb)
	333	$ ilde{b}_L$	νbbb	u t b b
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

- $\begin{tabular}{ll} \bullet & MET only from tops or τ \\ or essentially no MET \\ \end{tabular}$
- Taus, but not e or μ or no leptons at all

Scenario			Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \ \nu tbq$	
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq, \nu tbq$	
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
	232	$ ilde{t}_L$	μtbq	μbbq	
LQD	202	\widetilde{b}_L	νbbq	u t b q	
	233	\widetilde{t}_L	μtbb	μbbb	
	200	$ ilde{b}_L$	(νbbb)	u t b b	
	332	\widetilde{t}_L	au tbq	au bbq	
		$ ilde{b}_L$	(νbbq)	u t b q	
	222	\widetilde{t}_L	au tbb	au bbb	
	333	$ ilde{b}_L$	(νbbb)	u t b b	
	213	$ ilde{b}_R$	bbqq	tbqq	
UDD	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

- $\begin{tabular}{ll} \bullet & MET only from tops or τ \\ or essentially no MET \\ \end{tabular}$
- Taus, but not e or μ
 or no leptons at all

	Scenario			Final state (for each stop)		
Coupl	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	τbqq	τbqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$(\tau tbq, \nu tbq)$		
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	τbbq	(τbbq)		
	232	$ ilde{t}_L$	μtbq	μbbq		
LQD	202	$ ilde{b}_L$	νbbq	vtbq		
	233	$ ilde{t}_L$	μtbb	μbbb		
	200	$ ilde{b}_L$	νbbb	(νtbb)		
	332	$ ilde{t}_L$	τtbq	τbbq		
		$ ilde{b}_L$	νbbq	vtbq		
	333	$ ilde{t}_L$	$\overline{\tau tbb}$	(τbbb)		
	333	$ ilde{b}_L$	νbbb	(νtbb)		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		

Challenges

- MET only from tops or τ or essentially no MET
- Taus, but not e or μ or no leptons at all

- Large jet multiplicities
 (6 to 12 parton-level jets)
- At least 4 *b*-jets per event or even 6
- Leptons *are* available
 (at least from tops or τ)

	Scenario			Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$(\tau tbq, \nu tbq)$		
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	τbbq	(au bbq)		
	232	$ ilde{t}_L$	μtbq	μbbq		
LQD	202	$ ilde{b}_L$	νbbq	vtbq		
	233	$ ilde{t}_L$	μtbb	μbbb		
	200	$ ilde{b}_L$	νbbb	(νtbb)		
	332	$ ilde{t}_L$	τtbq	τbbq		
		$ ilde{b}_L$	νbbq	vtbq		
	333	$ ilde{t}_L$	$\overline{\tau tbb}$	τbbb		
	000	$ ilde{b}_L$	νbbb	(νtbb)		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		

Challenges

- MET only from tops or τ or essentially no MET
- Taus, but not e or μ or no leptons at all

- Large jet multiplicities (6 to 12 parton-level jets)
- At least 4 *b*-jets per event or even 6
- Leptons *are* available
 (at least from tops or τ)

Scenario		Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq,\ \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq, \nu tbq$
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
hoLQD		$ ilde{b}_L$	u bbq	u t b q
ГФР	233	$ ilde{t}_L$	μtbb	μbbb
	200	$ ilde{b}_L$	νbbb	(νtbb)
	332	$ ilde{t}_L$	au t b q	au bbq
		$ ilde{b}_L$	u bbq	u t b q
	333	$ ilde{t}_L$	(τtbb)	τbbb
	333	$ ilde{b}_L$	νbbb	νtbb
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

Challenges

- MET only from tops or τ or essentially no MET
- Taus, but not e or μ or no leptons at all

- Large jet multiplicities (6 to 12 parton-level jets)
- At least 4 *b*-jets per event **or even 6**
- Leptons *are* available
 (at least from tops or τ)

Scenario		Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	τbqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$(\tau tbq, \nu tbq)$
	020	$(ilde{ u}_{ au}, ilde{ au})_L$	τbbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
LQD	202	$ ilde{b}_L$	νbbq	vtbq
	233	$ ilde{t}_L$	μtbb	μbbb
		$ ilde{b}_L$	νbbb	(νtbb)
	332	$ ilde{t}_L$	τtbq	au bbq
		$ ilde{b}_L$	νbbq	vtbq
	333	$ ilde{t}_L$	$\overline{\tau tbb}$	τbbb
	000	$ ilde{b}_L$	νbbb	(νtbb)
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

Challenges

- MET only from tops or τ or essentially no MET
- Taus, but not e or μ or no leptons at all

- Large jet multiplicities (6 to 12 parton-level jets)
- At least 4 *b*-jets per event or even 6
- Leptons are available (at least from tops or τ)

Simulated searches

ATLAS CMS

Final State	\sqrt{s}	\mathcal{L}	Reference
3ℓ+jets+MET	8	13.0	CONF-2012-151
$3\ell + MET \text{ (old)}$	8	13.0	CONF-2012-154
$3\ell + MET$	8	20.7	CONF-2013-035
$4\ell \text{ (old)}$	8	13.0	CONF-2012-153
$4\ell + MET$	8	20.7	CONF-2013-036
$3-4\ell$	8	19.5	PAS-SUS-13-003
$b'(3\ell)$	7	4.9	arXiv:1204.1088
3ℓ	7	1.02	CONF-2011-158
4ℓ	7	1.02	CONF-2011-144
$3\ell + MET$	7	2.06	arXiv:1204.5638
$3\ell + MET$	7	4.7	arXiv:1208.3144
$4\ell + MET$	7	2.06	CONF-2012-001
$3-4\ell$	7	4.98	arXiv:1204.5341
SS DIL+MET	8	5.8	CONF-2012-105
SS DIL w/b (SUSY)	8	20.7	CONF-2013-007
SS DIL w/b (Exo.)	8	14.3	CONF-2013-051
SS DIL w/b	8	10.5	arXiv:1212.6194
SS DIL	7	4.98	arXiv:1205.6615
SS DIL w/b	7	4.98	arXiv:1205.3933
SSSF DIL	7	4.98	arXiv:1207.6079
SSSF DIL	7	1.6	arXiv:1201.1091
SS DIL	7	4.7	arXiv:1210.4538
SS DIL+jets+MET	7	2.05	arXiv:1203.5763
SS DIL+MET	7	1.04	arXiv:1110.6189
b' (SS DIL)	7	4.7	CONF-2012-130
b' (SS DIL)	7	4.9	arXiv:1204.1088
OS DIL+MET	7	1.04	arXiv:1110.6189
OS DIL+jets+MET	7	4.7	arXiv:1208.4688
OS DIL+MET	7	4.98	arXiv:1206.3949
leptonic m_{T2}	7	4.7	arXiv:1209.4186
Z+jets+MET	7	4.98	arXiv:1204.3774
Z+jets+MET	7	2.05	arXiv:1204.6736

F: 1.0.	_		D.C
Final State	\sqrt{s}	\mathcal{L}	Reference
ℓ +jets+MET	8	5.8	CONF-2012-104
$\ell + b + 6j + \text{MET}$	8	19.4	PAS-SUS-13-007
$(\mu j)(\nu j)$	8	19.6	PAS-EXO-12-042
$\ell + 7j + \text{MET}$	7	4.7	CONF-2012-140
ℓ +jets+MET	7	4.7	PAS-SUS-12-010
ℓ +jets+MET	7	4.7	CONF-2012-041
$\ell + b + \text{jets} + \text{MET}$	7	2.05	arXiv:1203.6193
$\ell + b + \text{jets} + \text{MET}$	7	4.98	PAS-SUS-11-027
$\ell + b + \text{jets} + \text{MET}$	7	4.98	PAS-SUS-11-028
$1/2\tau + \text{jets} + \text{MET}$	8	20.7	CONF-2013-026
$4\ell + \text{MET w}/\tau$	8	20.7	CONF-2013-036
$3-4\ell \text{ w}/\tau$	8	19.5	PAS-SUS-13-003
$1/2\tau$ +jets+MET	7	4.7	arXiv:1210.1314
$\tau + \ell + \text{jets} + \text{MET}$	7	4.7	arXiv:1210.1314
τ +jets+MET (old)	7	2.05	CONF-2012-005
2τ +jets+MET (old)	7	2.05	arXiv:1203.6580
OS DIL+MET w/τ	7	4.98	arXiv:1206.3949
SS DIL w/τ	7	4.98	arXiv:1205.6615
$3-4\ell \text{ w}/1\tau$	7	4.98	arXiv:1204.5341
$3\text{-}4\ell \text{ w}/2\tau$	7	4.98	arXiv:1204.5341
$t\bar{t}$ xsec (DIL)	8	2.4	PAS-TOP-12-007
$t\bar{t}$ xsec (DIL)	7	0.70	arXiv:1202.4892
$t\bar{t}$ xsec (DIL)	7	2.3	arXiv:1208.2671
$t\overline{t}$ xsec (DIL w/ τ)	7	~ 2	arXiv:1203.6810
$t\bar{t}$ +jet (LJ)	7	5.0	PAS-EXO-11-056
$t\bar{t}+m_T \text{ (LJ)}$	7	1.04	arXiv:1109.4725

Final State	\sqrt{s}	\mathcal{L}	Reference
2-6 jets+MET	8	20.3	CONF-2013-047
2-6 jets+MET (old)	8	5.8	CONF-2012-109
7-10 jets+MET w/ b	8	20.3	CONF-2013-054
8-10 jets+MET w/ M_J^{Σ}	8	20.3	CONF-2013-054
6-9 jets+MET	8	5.8	CONF-2012-103
b+jets+MET	8	19.4	arXiv:1305.2390
3b+jets+MET	8	12.8	CONF-2012-145
jets w/ α_T w/b	8	11.7	arXiv:1303.2985
${\rm monojet}{+}{\rm MET}$	8	19.5	PAS-EXO-12-048
monojet+MET	8	10.5	CONF-2012-147
2-6 jets+MET	7	4.7	CONF-2012-033
6-9 jets+MET	7	4.7	CONF-2012-037
jets+MET	7	4.98	arXiv:1207.1898
jets+MET (old)	7	1.1	PAS-SUS-11-004
b+jets+MET	7	2.05	arXiv:1203.6193
b+jets $+$ MET	7	4.98	arXiv:1208.4859
b+jets+MET (old)	7	1.1	PAS-SUS-11-006
3b+jets+MET	7	4.7	CONF-2012-058
jets w/ α_T w/b	7	4.98	PAS-SUS-11-022
jets w/ α_T (old)	7	1.14	arXiv:1109.2352
$\ell + b + \text{jets (low MET)}^*$	7	5.0	arXiv:1210.7471
$\ell+3b+\mathrm{jets}$ (low MET)	8	14.3	CONF-2013-018
6 jets (no MET)	7	4.6	arXiv:1210.4813
up to 10 objects ("BH")	8	12.1	arXiv:1303.5338
$(\mu j)(\mu j)$	8	19.6	PAS-EXO-12-042
$(\tau b)(\tau b)$	7	4.8	PAS-EXO-12-002

Simulated searches

ATLAS CMS

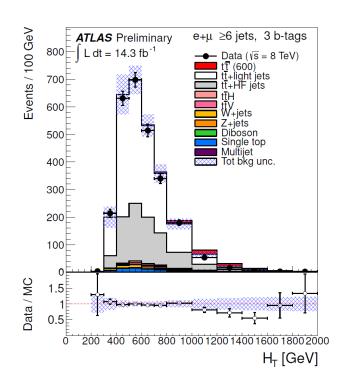
Final State	\sqrt{s}	\mathcal{L}	Reference
3ℓ+jets+MET	8	13.0	CONF-2012-151
$3\ell + MET \text{ (old)}$	8	13.0	CONF-2012-154
$3\ell + MET$	8	20.7	CONF-2013-035
$4\ell \text{ (old)}$	8	13.0	CONF-2012-153
$4\ell + MET$	8	20.7	CONF-2013-036
$3-4\ell$	8	19.5	PAS-SUS-13-003
$b'(3\ell)$	7	4.9	arXiv:1204.1088
3ℓ	7	1.02	CONF-2011-158
4ℓ	7	1.02	CONF-2011-144
$3\ell + MET$	7	2.06	arXiv:1204.5638
$3\ell + MET$	7	4.7	arXiv:1208.3144
$4\ell + MET$	7	2.06	CONF-2012-001
$3-4\ell$	7	4.98	arXiv:1204.5341
SS DIL+MET	8	5.8	CONF-2012-105
SS DIL w/b (SUSY)	8	20.7	CONF-2013-007
SS DIL w/b (Exo.)	8	14.3	CONF-2013-051
SS DIL w/b	8	10.5	arXiv:1212.6194
SS DIL	7	4.98	arXiv:1205.6615
SS DIL w/b	7	4.98	arXiv:1205.3933
SSSF DIL	7	4.98	arXiv:1207.6079
SSSF DIL	7	1.6	arXiv:1201.1091
SS DIL	7	4.7	arXiv:1210.4538
SS DIL+jets+MET	7	2.05	arXiv:1203.5763
SS DIL+MET	7	1.04	arXiv:1110.6189
b' (SS DIL)	7	4.7	CONF-2012-130
b' (SS DIL)	7	4.9	arXiv:1204.1088
OS DIL+MET	7	1.04	arXiv:1110.6189
OS DIL+jets+MET	7	4.7	arXiv:1208.4688
OS DIL+MET	7	4.98	arXiv:1206.3949
leptonic m_{T2}	7	4.7	arXiv:1209.4186
Z+jets+MET	7	4.98	arXiv:1204.3774
Z+jets+MET	7	2.05	arXiv:1204.6736

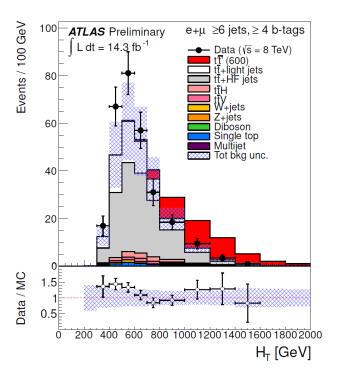
Final State	\sqrt{s}	\mathcal{L}	Reference
ℓ +jets+MET	8	5.8	CONF-2012-104
$\ell + b + 6j + \text{MET}$	8	19.4	PAS-SUS-13-007
$(\mu j)(\nu j)$	8	19.6	PAS-EXO-12-042
$\ell + 7j + \text{MET}$	7	4.7	CONF-2012-140
ℓ +jets+MET	7	4.7	PAS-SUS-12-010
ℓ +jets+MET	7	4.7	CONF-2012-041
$\ell + b + \text{jets} + \text{MET}$	7	2.05	arXiv:1203.6193
$\ell + b + \text{jets} + \text{MET}$	7	4.98	PAS-SUS-11-027
$\ell + b + \text{jets} + \text{MET}$	7	4.98	PAS-SUS-11-028
$1/2\tau$ +jets+MET	8	20.7	CONF-2013-026
$4\ell + \text{MET w}/\tau$	8	20.7	CONF-2013-036
$3-4\ell \text{ w}/\tau$	8	19.5	PAS-SUS-13-003
$1/2\tau$ +jets+MET	7	4.7	arXiv:1210.1314
$\tau + \ell + \text{jets} + \text{MET}$	7	4.7	arXiv:1210.1314
τ +jets+MET (old)	7	2.05	CONF-2012-005
2τ +jets+MET (old)	7	2.05	arXiv:1203.6580
OS DIL+MET w/τ	7	4.98	arXiv:1206.3949
SS DIL w/τ	7	4.98	arXiv:1205.6615
$3\text{-}4\ell \text{ w}/1\tau$	7	4.98	arXiv:1204.5341
$3-4\ell \text{ w}/2\tau$	7	4.98	arXiv:1204.5341
$t\bar{t}$ xsec (DIL)	8	2.4	PAS-TOP-12-007
$t\bar{t}$ xsec (DIL)	7	0.70	arXiv:1202.4892
$t\bar{t}$ xsec (DIL)	7	2.3	arXiv:1208.2671
$t\overline{t}$ xsec (DIL w/ τ)	7	~ 2	arXiv:1203.6810
$t\bar{t}+\mathrm{jet}\ (\mathrm{LJ})$	7	5.0	PAS-EXO-11-056
$t\bar{t}+m_T \text{ (LJ)}$	7	1.04	arXiv:1109.4725

	1		
Final State	\sqrt{s}	\mathcal{L}	Reference
2-6 jets+MET	8	20.3	CONF-2013-047
2-6 jets+MET (old)	8	5.8	CONF-2012-109
7-10 jets+MET w/ b	8	20.3	CONF-2013-054
8-10 jets+MET w/ M_J^{Σ}	8	20.3	CONF-2013-054
6-9 jets+MET	8	5.8	CONF-2012-103
b+jets+MET	8	19.4	arXiv:1305.2390
3b+jets+MET	8	12.8	CONF-2012-145
jets w/ α_T w/ b	8	11.7	arXiv:1303.2985
${\rm monojet}{+}{\rm MET}$	8	19.5	PAS-EXO-12-048
${\rm monojet}{+}{\rm MET}$	8	10.5	CONF-2012-147
2-6 jets+MET	7	4.7	CONF-2012-033
6-9 jets+MET	7	4.7	CONF-2012-037
jets+MET	7	4.98	arXiv:1207.1898
jets+MET (old)	7	1.1	PAS-SUS-11-004
b+jets+MET	7	2.05	arXiv:1203.6193
b+jets+MET	7	4.98	arXiv:1208.4859
b+jets+MET (old)	7	1.1	PAS-SUS-11-006
3b+jets+MET	7	4.7	CONF-2012-058
jets w/ α_T w/b	7	4.98	PAS-SUS-11-022
jets w/α_T (old)	7	1.14	arXiv:1109.2352
$\ell + b + \text{jets (low MET)}^*$	7	5.0	arXiv:1210.7471
$\ell+3b+\text{jets (low MET)}$	8	14.3	CONF-2013-018
6 jets (no MET)	7	4.6	arXiv:1210.4813
up to 10 objects ("BH")	8	12.1	arXiv:1303.5338
$(\mu j)(\mu j)$	8	19.6	PAS-EXO-12-042
$(\tau b)(\tau b)$	7	4.8	PAS-EXO-12-002

Several searches that will play a special role

ℓ + 3b + jets (low MET)


ATLAS-CONF-2013-018 (14.3/fb at 8 TeV) Talk by Antonella Succurro yesterday


a.k.a.

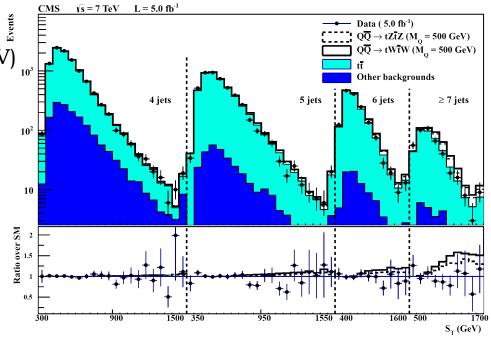
Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Selection

- Exactly 1 lepton with $p_T > 25$ GeV
- 6+ jets with $p_T > 25 \text{ GeV}$
- MET > 20 GeV
- MET + m_T > 60 GeV
- 3 or 4+ *b*-tags
- H_T distributions (incl. lepton, jets, MET)

We defined search regions as: $H_T > 800$, 1000, 1200, 1400, 1600, 1800 GeV

$\ell + b + \text{jets (low MET)}$


CMS-PAS-B2G-12-004, arXiv:1210.7471 (5/fb at 7 TeV)

a.k.a.

Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at $\sqrt{s} = 7 \, \text{TeV}$

Selection

- Exactly 1 lepton ($p_T^e > 35 \text{ GeV}$, $p_T^{\mu} > 42 \text{ GeV}$)
- Jets with $p_T > 100$, 60, 50, 35 GeV
- MET > 20 GeV
- 1+ *b*-tags
- $N_{\text{jets}} = 4, 5, 6, 7 + \text{ (with } p_T > 35 \text{ GeV)}$
- $^{\circ}$ S_T distributions (incl. lepton, jets, MET)

Obstacles to reinterpretation

- Systematic uncertainties per S_T bin are not available
- 8 TeV search for a similar final state

Inclusive search for a vector-like T quark by CMS

CMS-PAS-B2G-12-015 (20/fb at 8 TeV) Talk by Devdatta Majumder yesterday

relies on BDT, so cannot be reinterpreted

$\ell + b + \text{jets (low MET)}$ Our extension to 20/fb at 8 TeV

Selection

Same as in 7 TeV CMS search:

• Leptons, jets, MET, b-tagging

Different from CMS search:

$$N_{\text{jets}} = 4+, 5+, 6+, 7+, 8+, 9+$$

 $S_T > S_T^{\text{max}}$, with $S_T^{\text{max}} = 400, 600, 800, ..., 3000$

Background estimation

 $t\overline{t}$ + jets: ALPGEN + Pythia (matched up to 4 extra jets)

 S_T distributions for 7 TeV agree with CMS if we normalize by 1.6. Same factor applied to 8 TeV distributions.

Systematic uncertainties

Tentatively assume 25% (similar to ATLAS search just mentioned)

(μj)(μj) CMS-PAS-EXO-12-042 (19.6/fb at 8 TeV) Talk by Edmund Berry yesterday

a.k.a.

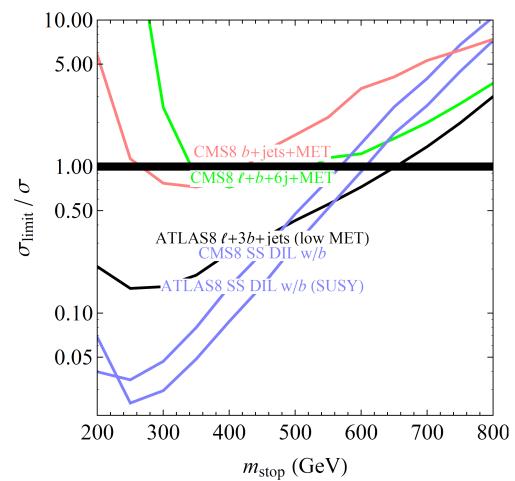
Search for pair production of second-generation scalar leptoquarks in pp collisions at $\sqrt{s}=8$ TeV with the CMS Detector

Selection

- 2 muons
- Two leading jets $p_T > 125$, 45 GeV
- Cuts on S_T (2 muons + 2 jets), $M_{\mu\mu}$, $M_{\min}(\mu, \text{jet})$ with different thresholds for each leptoquark (LQ) mass:

M_{LQ} (GeV)	300	350	400	450	500	550	600	650	700	750	800	850	900	950	≥1000
$S_{\rm T} > ({\rm GeV})$	380	460	540	615	685	755	820	880	935	990	1040	1090	1135	1175	1210
$M_{\mu\mu} > (\text{GeV})$	100	115	125	140	150	165	175	185	195	205	215	220	230	235	245
$M_{min}(\mu, \text{jet}) > (\text{GeV})$	115	115	120	135	155	180	210	250	295	345	400	465	535	610	690

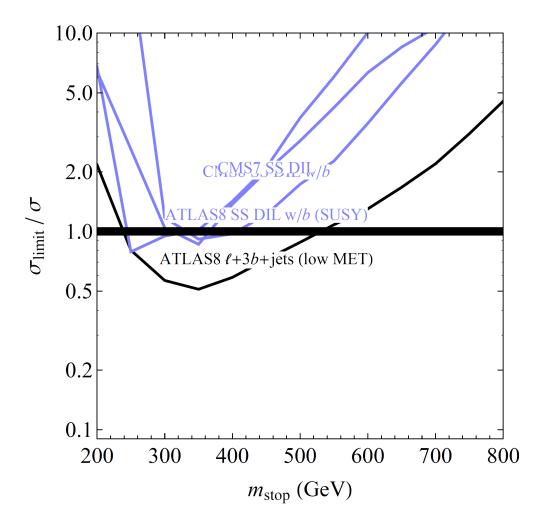
In our context


Relevant to 2 muons + many jets scenarios, e.g., $\,\tilde{t}\,\rightarrow\,\mu bbq\,$

We will use each LQ mass as a search region (for stops of any mass).

	Scen	ario	Final state (for each stop)			
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \ \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	$ ilde{t}_L$	μtbq	μbbq		
LQD	บ	$ ilde{b}_L$	νbbq	u t b q		
LQD	233	$ ilde{t}_L$	μtbb	μbbb		
	200	$ ilde{b}_L$	νbbb	u t b b		
	332	$ ilde{t}_L$	au t b q	au bbq		
		$ ilde{b}_L$	νbbq	u t b q		
	333	\widetilde{t}_L	au tbb	au bbb		
	000	$ ilde{b}_L$	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		

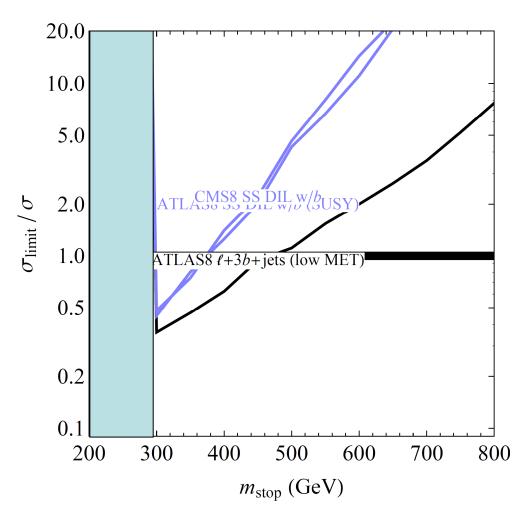
Now let's look at some results!


	Scenario			(for each stop)
Coup	ling	Mediator \tilde{f}	Case 1	Case 2
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \nu tbq$
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
LQD	202	$ ilde{b}_L$	νbbq	u t b q
ГФР	233	$ ilde{t}_L$	μtbb	μbbb
	200	$ ilde{b}_L$	νbbb	u t b b
	332	$ ilde{t}_L$	au t b q	au bbq
		$ ilde{b}_L$	νbbq	u t b q
	333	$ ilde{t}_L$	au tbb	au bbb
	333	$ ilde{b}_L$	u b b b	u t b b
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

Even though MET and SS dileptons are available, the ATLAS lepton + many jets search (essentially without MET) sets the best limit at high masses.

	Scenario			Final state (for each stop)		
Coupl	upling Mediator \tilde{f}		Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq,\ \nu tbq$		
_	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	$ ilde{t}_L$	μtbq	μbbq		
LQD	202	$ ilde{b}_L$	νbbq	u t b q		
цар	233	$ ilde{t}_L$	μtbb	μbbb		
	200	$ ilde{b}_L$	νbbb	u t b b		
	332	$ ilde{t}_L$	au t b q	au bbq		
	002	$ ilde{b}_L$	νbbq	u t b q		
	333	$ ilde{t}_L$	au tbb	au bbb		
	333	$ ilde{b}_L$	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	\tilde{t}_R	tbbq	bbbq		

	Scen	ario	Final state (for each stop)			
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	$ ilde{t}_L$	μtbq	μbbq		
$_{ m LQD}$	202	$ ilde{b}_L$	u bbq	u t b q		
ГФР	233	$ ilde{t}_L$	μtbb	μbbb		
	دن⊿	$ ilde{b}_L$	νbbb	u t b b		
	332	$ ilde{t}_L$	τtbq	au bbq		
		$ ilde{b}_L$	u bbq	u t b q		
	333	\widetilde{t}_L	au tbb	au bbb		
	000	\widetilde{b}_L	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		

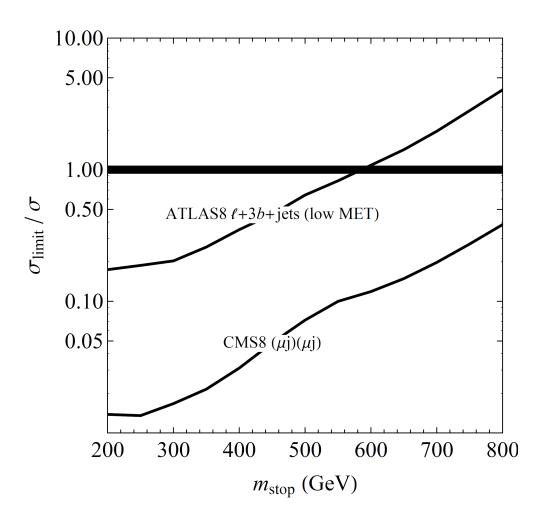


The lepton + many jets search is good also at utilizing leptons from tau decays.

Can it be optimized for lower masses?

	Scen	ario	Final state (for each stop)			
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \ \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	\widetilde{t}_L	μtbq	μbbq		
LQD	202	$ ilde{b}_L$	u bbq	u t b q		
LQD	233	\widetilde{t}_L	μtbb	μbbb		
	<i>2</i> 33	$ ilde{b}_L$	νbbb	u t b b		
	332	$ ilde{t}_L$	au tbq	au bbq		
		$ ilde{b}_L$	νbbq	u t b q		
	333	$ ilde{t}_L$	au tbb	au bbb		
	000	$ ilde{b}_L$	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		

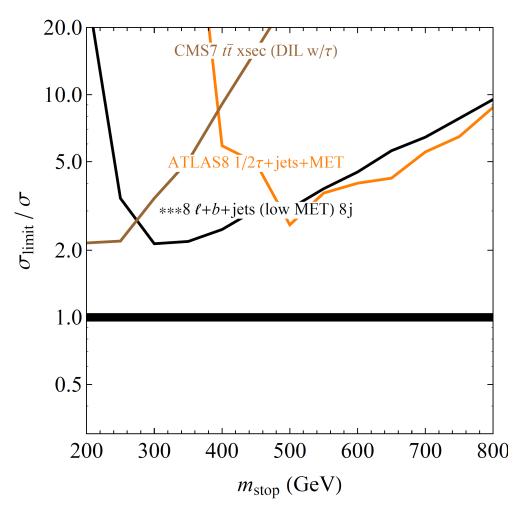
	Scen	ario	Final state (for each stop)			
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$		
	321	$(\tilde{ u}_{ au},\tilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	$ ilde{t}_L$	μtbq	μbbq		
LQD	202	\widetilde{b}_L	u bbq	u t b q		
	233	$ ilde{t}_L$	μtbb	μbbb		
		$ ilde{b}_L$	νbbb	u t b b		
	332	\widetilde{t}_L	au tbq	au bbq		
	332	$ ilde{b}_L$	u bbq	u t b q		
	333	\widetilde{t}_L	au tbb	au bbb		
	ააა	$ ilde{b}_L$	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		



Powerful also when leptons are coming from tops.

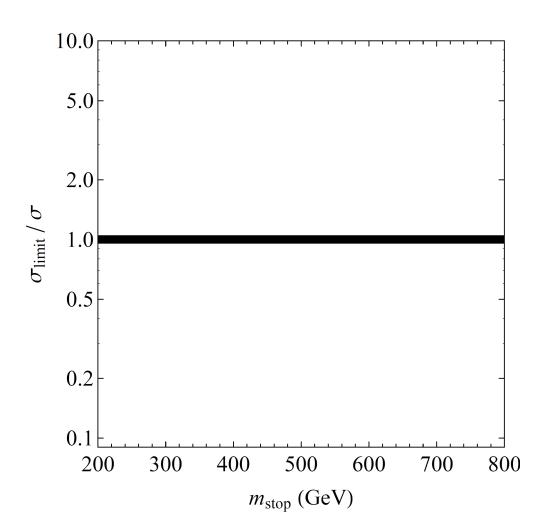
Could be strengthened by bins with more than 6 jets (since 10 parton-level jets are available).

	Scen	ario	Final state (for each stop)			
Coup	ling	Mediator \tilde{f}	Case 1	Case 2		
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq, \ \nu tbq$		
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq		
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$		
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq		
	232	\widetilde{t}_L	μtbq	μbbq		
LQD	202	$ ilde{b}_L$	u bbq	u t b q		
LQD	233	$ ilde{t}_L$	μtbb	μbbb		
	<i>2</i> 33	$ ilde{b}_L$	νbbb	u t b b		
	332	$ ilde{t}_L$	au tbq	au bbq		
		$ ilde{b}_L$	νbbq	u t b q		
	333	$ ilde{t}_L$	au tbb	au bbb		
	000	$ ilde{b}_L$	νbbb	u t b b		
	213	$ ilde{b}_R$	bbqq	tbqq		
UDD	312	$ ilde{t}_R$	tbqq	bbqq		
	323	$ ilde{t}_R$	tbbq	bbbq		


	Scen	ario	Final state (for each stop)		
Coup	ling	Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$	
	321	$(\tilde{ u}_{ au},\tilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$	
	323	$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
	232	$ ilde{t}_L$	μtbq	μbbq	
LQD	202	$ ilde{b}_L$	νbbq	u t b q	
LQD	233	$ ilde{t}_L$	μtbb	μbbb	
		$ ilde{b}_L$	νbbb	u t b b	
	332	$ ilde{t}_L$	τtbq	au bbq	
		$ ilde{b}_L$	νbbq	u t b q	
	333	$ ilde{t}_L$	au tbb	au bbb	
	333	$ ilde{b}_L$	νbbb	u t b b	
	213	$ ilde{b}_R$	bbqq	tbqq	
UDD	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

- Lepton + many jets search: effective despite needing to lose the 2^{nd} muon
- Analogous "OS dilepton + many jets" search would be extremely powerful
- Even the LQ search sets very strong limits, despite its 2-body motivation and ignoring the *b* multiplicity

Scenario		Final state (for each stop)		
Coupl	ling	Mediator \tilde{f}	Case 1 Case 2	
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \ \nu tbq$
LQD	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq, \ \nu bbq$	$\tau tbq, \nu tbq$
		$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq
	232	$ ilde{t}_L$	μtbq	μbbq
		$ ilde{b}_L$	νbbq	u t b q
	233	$ ilde{t}_L$	μtbb	μbbb
		$ ilde{b}_L$	νbbb	u t b b
	332	$ ilde{t}_L$	au t b q	au bbq
		$ ilde{b}_L$	νbbq	u t b q
	333	$ ilde{t}_L$	au tbb	au bbb
		$ ilde{b}_L$	νbbb	u t b b
	213	$ ilde{b}_R$	bbqq	tbqq
UDD	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq


Scenario			Final state (for each stop)		
Coupling		Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$	
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	au tbq, u tbq	
		$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
LQD	232	\widetilde{t}_L	μtbq	μbbq	
		\widetilde{b}_L	νbbq	u t b q	
	233	\widetilde{t}_L	μtbb	μbbb	
		$ ilde{b}_L$	νbbb	u t b b	
	332	\widetilde{t}_L	au tbq	au bbq	
		$ ilde{b}_L$	νbbq	u t b q	
	333	\widetilde{t}_L	au tbb	au bbb	
		$ ilde{b}_L$	νbbb	u t b b	
UDD	213	$ ilde{b}_R$	bbqq	tbqq	
	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

- Our 8 TeV extension of CMS lepton + many jets (single *b*) is almost sensitive. Ideas for a better search:
 - "lepton + τ_h + many jets" analogous to "lepton + many jets"
 - $\tau_h (+ \tau_h/\ell)$ + jets + MET, but with b-tagging, lower MET cuts than existing searches
 - Generalization of LQ3 search, $(\tau b)(\tau b)$
- Low masses: $t\bar{t}$ xsec w/ $\ell + \tau_{\rm h}$ (with only 2/fb at 7 TeV) better than all searches! Construct search based on $t\bar{t}$ xsec measurement (use high jet multiplicity)

Scenario			Final state (for each stop)	
Coupling Mediator \tilde{f}		Case 1	Case 2	
LQD	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \ \nu tbq$
	321	$(\tilde{ u}_{ au},\tilde{ au})_L$	au bqq	au bqq
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$
		$(ilde{ u}_{ au},\ ilde{ au})_L$	au bbq	au bbq
	232	\widetilde{t}_L	μtbq	μbbq
		$ ilde{b}_L$	νbbq	u t b q
	233	$ ilde{t}_L$	μtbb	μbbb
		$ ilde{b}_L$	νbbb	u t b b
	332	\widetilde{t}_L	au tbq	au bbq
		$ ilde{b}_L$	νbbq	u t b q
	333	\widetilde{t}_L	au tbb	au bbb
		$ ilde{b}_L$	νbbb	u t b b
UDD	213	$ ilde{b}_R$	bbqq	tbqq
	312	$ ilde{t}_R$	tbqq	bbqq
	323	$ ilde{t}_R$	tbbq	bbbq

Scenario			Final state (for each stop)		
Coupling		Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \nu bbq$	$etbq, \nu tbq$	
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq, \nu bbq$	$\tau tbq, \nu tbq$	
		$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
	232	$ ilde{t}_L$	μtbq	μbbq	
LQD		$ ilde{b}_L$	νbbq	u t b q	
LQD	233	$ ilde{t}_L$	μtbb	μbbb	
		$ ilde{b}_L$	νbbb	u t b b	
	332	\widetilde{t}_L	au tbq	au bbq	
		$ ilde{b}_L$	νbbq	u t b q	
	333	\widetilde{t}_L	au tbb	au bbb	
		$ ilde{b}_L$	νbbb	u t b b	
	213	$ ilde{b}_R$	bbqq	tbqq	
UDD	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

- No relevant searches exist
- At least the 6 *b*-jet case likely has low background
- Resonant structures are present

Conclusions

Lepton(s) + many jets (low MET) - relevant to a large, diverse set of scenarios (also the gluino scenarios not included in this talk) Promising searches:

- Lepton + many jets
- OS dilepton + many jets (~ generalization of LQ searches)
- Lepton + hadronic tau + many jets

- Jet multiplicities up to ~10Low and high *b*-jet multiplicities
- S_T : from as low as possible to as high as the data goes

See also Lisanti, Schuster, Strassler, Toro: arXiv:1107.5055 [JHEP 1211 (2012) 081]

Multijet

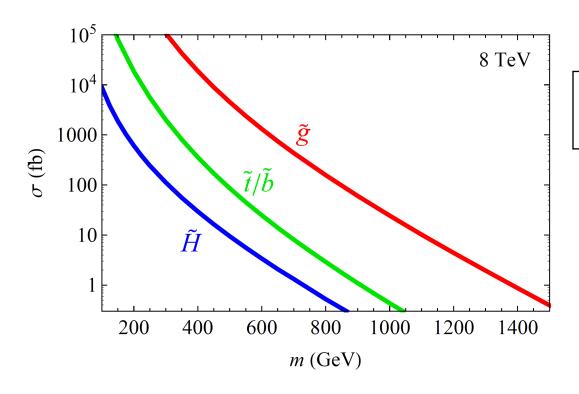
- Very few searches exist
- Can use high jet and b-jet multiplicities, resonant structures, ...
- Some of the scenarios addressed by lepton + many jets might get even stronger limits from appropriate multijet searches

New physics in the $t \bar t$ sample – relevant to several scenarios at low masses

Useful handles: • Extra jets

- Extra *b*-jets
- Violation of lepton flavor universality (e.g., excess in taus only)

For reinterpretations by theorists

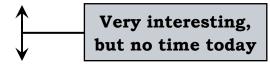

Include simple cut-and-count bins with measured event yields, expected background and systematic uncertainty.

Backup slides

Superpartner spectrum considerations

EW scale without fine tuning:

- Higgsinos: below ~ 200 GeV
- RH & LH stops, LH sbottom: below ~ 500 GeV
- Gluino: below ~ 1000 GeV (unless it's a Dirac gluino, beyond MSSM)



Dominant production process depends on the masses.

Other superpartners can also be around and mediate decays.

Higgsino production (w/Jared Evans)

to be released soon

Stop production (w/Jared Evans)

arXiv:1209.0764 [JHEP 1304 (2013) 028] now updated with 8 TeV searches

Today's talk

Gluino production (w/Jared Evans, David Shih, Matt Strassler) - to be released soon

Scenario			Final state (for each stop)		
• Coupling		Mediator \tilde{f}	Case 1	Case 2	
	123	$ ilde{b}_R$	$ebbq, \ \nu bbq$	$etbq,\ \nu tbq$	
	321	$(ilde{ u}_{ au}, ilde{ au})_L$	au bqq	au bqq	
	323	$ ilde{b}_R$	$\tau bbq,\ \nu bbq$	$\tau tbq, \nu tbq$	
		$(ilde{ u}_{ au}, ilde{ au})_L$	au bbq	au bbq	
	232	$ ilde{t}_L$	μtbq	$_\mu bbq$	
LQD		$\left(ilde{b}_{L} ight)$	u bbq	u t b q	
ПФГ	233	\widetilde{t}_L	μtbb	μbbb	
		$ ilde{b}_L$	u b b b	u t b b	
	332	\widetilde{t}_L	au t b q	au bbq	
		$ ilde{b}_L$	u bbq	u t b q	
	333	\widetilde{t}_L	au tbb	au bbb	
		$ ilde{b}_L$	νbbb	u t b b	
UDD	213	$ ilde{b}_R$	bbqq	tbqq	
	312	$ ilde{t}_R$	tbqq	bbqq	
	323	$ ilde{t}_R$	tbbq	bbbq	

EXAMPLE

<u>Case 1</u>:

$$ilde{H}^+ o W^{+*} ilde{H}^0_1 \ ilde{H}^0_1 o {
m RPV}$$
 Stop and antistop can give same-sign leptons

Case 2:

$$\tilde{H}^+ \to \mathrm{RPV}$$

Simulation and limit setting

- Detector simulation (incl. FastJet), with:
 - Lepton ID eff. (per search)
 - Lepton isolation (per search)
 - Jet energy resolution
 - *b*-tagging (per search)
 - o and more...
- Cuts of ATLAS and CMS searches from the table
- Validation on examples from ATLAS and CMS papers: typically agree within ~30% (sometimes a factor of ~2)
- Efficiency threshold ~ 10⁻³ (instead of including systematic uncertainty for the signal tails)
 - Typically has an effect for very low masses.
- Use backgrounds (and uncertainties) from the collaborations to derive limits. Search region with the best limit is used.