

July 18th 2013

Jelena Aleksić on behalf of the MAGIC Collaboration

Deep Survey of Segue I with MAGIC

Outline

Dark Matter Searches with MAGIC
Observations
Dedicated analysis
Results
Conclusions

Dark Matter Searches with MAGIC

* Active efforts in indirect dark matter searches

- + Galactic Center
 - (17 h) ApJ Lett. 638 (2006) L101
- Galaxy Cluster
 (25 h) ApJ 710 (2010) 634
- Dwarf Spheroidals

Segue I (30 h): JCAP 06 (2011) 035 Willman I (16 h): ApJ 697 (2009) 1299 Draco (8 h): Apj 679 (2008) 428

+ Subhalos

Dark Matter Searches with MAGIC

- ★ All existing publications on dark matter searches with mono data
- ★ Goal: Improve our best (published) limits by a factor 10
- ☆ Stereo system since 2009
 - Major upgrade finished in 2012
- Long-term observational campaign on best dark matter candidate
- ☆ Dedicated analysis approach

ApJ 692 (2009) 1464; Apj 733 (2011) 46

Segue 1	
Coordinates	10 ^h 07 ^m 04 ^s ,
	+16° 04′ 55″
Distance	23±2 kpc
Number of resolved stars	71
Magnitude	$-1.5\substack{+0.6\\-0.8}$
Apparent magnitude	13.8 ± 0.5
Luminosity	$340L_{\odot}$
Mass	$5.8^{+8.2}_{-3.1} imes 10^5 M_{\odot}$
M/L	$\sim 3400M_{\odot}/L_{\odot}$
Half-light radius	29 <mark>+8</mark> pc
System velocity	208.5±0.9 km/s
Velocity dispersion	3.7 ^{+1.4} _{-1.1} km/s
Mean [Fe/H]	-2.5

SEGUE = Sloan Extension for Galaxy Understanding and Exploration

- The most dark matter dominated object known so far
- \star The least luminous galaxy
- Close, no background,
 Northern hemisphere

Observations

- ★ January 2011 February 2013
- ★ Low zenith angle (13 35 deg)
- \star Wobble mode
- ★ Different telescope configurations(!):
 - + Jan 2011 May 2011: 47.0 h
 - + Jan 2012 Feb 2012: 12.3 h
 - + Mar 2012 May 2012: 51.3 h
 - + Nov 2012 Feb 2013: 47.5 h

- ★ January 2011 February 2013
- ★ Low zenith angle (13 35 deg)
- ★ Wobble mode
- ★ Different telescope configurations(!):
 - + Jan 2011 May 2011: 47.0 h
 - + Jan 2012 Feb 2012: 12.3 h
 - + Mar 2012 May 2012: 51.3 h
 - + Nov 2012 Feb 2013: 47.5 h

Total effective observation time: 157.9 h

The deepest survey of any dSph by any IACT!

Full Likelihood Method

$$\mathcal{L}(N_{\text{EST}}, M(\boldsymbol{\theta}) | N_{\text{OBS}}, E_1, \dots, E_{N_{\text{OBS}}}) = \frac{N_{\text{EST}}^{N_{\text{OBS}}}}{N_{\text{OBS}}!} e^{-N_{\text{EST}}} \times \prod_{i=1}^{N_{\text{OBS}}} \mathcal{P}(E_i; M(\boldsymbol{\theta}))$$

 $\overline{N_{\rm OBS}}$, $N_{\rm EST}$ – total measured and estimated number of events

$$E, E'$$
 – measured and true energy

 $M(\theta)$ – model with parameters θ

Measured and estimated spectral distributions

JCAP 10 (2012) 032

Full Likelihood Method

- ★ A priori assumption on the expected spectral shape → maximum advantage of potential features
- ★ Unbiased, stable, robust
- ★ Significant improvement with respect to the conventional analysis
- Straightforward combination of results from different instruments / sources

$$\mathcal{L}_{T}(M(\boldsymbol{\theta})) = \prod_{i=1}^{N_{\text{inst}}} \mathcal{L}_{i}(M(\boldsymbol{\theta}))$$

Full Likelihood Analysis

- * **Response function:** calculated for each observation period separately
- * Background spectral shape: modeled from the Segue 1 observations
- ★ Signal spectral shape: few models of dark matter annihilation and decay:
 - + Secondary photons
 - + Monochromatic line
 - + Virtual Internal Bremsstrahlung
 - + Gamma-ray boxes
- * m_{χ} in the 100 GeV 10 TeV (200 GeV – 20 TeV) range
- \star Br = 100%
- ★ Einasto density profile

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC

Strongest limit above 300 GeV from dSphs

Strongest limit above 450 GeV from dSphs

Strongest limit from IACTs

Close to the best-fit value

Monochromatic Line

Monochromatic Line

EPS-HEP, Stockholm

Monochromatic Line

EPS-HEP, Stockholm

Virtual Internal Bremsstrahlung

* Mass splitting parameter μ :

$$\mu = (m_{\eta} / m_{\chi})^2$$

- \star Degenerate μ values
- ★ Extended spectrum; softened peak

Virtual Internal Bremsstrahlung

Virtual Internal Bremsstrahlung

Conclusions

- ★ 157.9 h of Segue 1 observations with MAGIC: deepest ever survey of any dSph with any IACT
- * Complex combined analysis (different configurations)
- ★ Dedicated analysis, optimized for spectra with features
- ★ Strongest limits on various models of dark matter annihilation/decay from dSph with IACT
- * Above certain m_{γ} , strongest limits from dSphs

EPS-HEP, Stockholm

J.Aleksic - Segue I with MAGIC