# TOP Detector for Particle Identification at the Belle II Experiment

Y. Horii (Nagoya University) on behalf of the Belle II PID Group



# Belle II Experiment and PID

- Belle II experiment
  - $e^+e^-$  collision at  $\Upsilon$  resonances.
  - Target integrated luminosity of 50 ab<sup>-1</sup> (×50 of Belle).
  - Precision studies on B, c, τ, ...
    for searching for new physics.
  - Particle identification (PID) at Belle II
    - K/ $\pi$  efficiency > 95% (~90% at Belle),
    - K/ $\pi$  fake rate < 5 % (10-15% at Belle).

Barrel PID: TOP detector Endcap PID: ARICH detector



#### TOP (Time-of-Propagation) Detector

- Cherenkov photons are propagated in the quartz, and detected by the MCP-PMTs (~20 photons detected).
- Velocity  $\beta$  is measured by the position and the time of the photons.



Hit-time difference between  $\pi^{\pm}$  and  $K^{\pm}$  due to

- difference of time of flight btw  $\pi^{\pm}$  and K<sup>±</sup> from IP to TOP: ~50 ps/m,
- difference of time of propagation of the Cherenkov photon: ~75 ps/m.



Key issues: I) ensure photon efficiency and 2) maintain the photon angles.

• Requirements for polishing

| Flatness         | < 6.3 µm    |
|------------------|-------------|
| Perpendicularity | < 20 arcsec |
| Parallelism      | < 4 arcsec  |
| Roughness        | < 5 Å (RMS) |

Additional requirements

| Bulk transmittance (τ)  | > 98 %/m        |
|-------------------------|-----------------|
| Surface reflectance (R) | > 99.9 %/bounce |

For a Corning 7980 0D prototype bar,

 $\tau = (99.4 \pm 0.2)$ %/m, R = (99.92 ± 0.01) %/bounce at Ref. angle 56°.

## Glue for Quartz Bars

Alignment using micrometer heads.



Position and angle adjustable by  $O(10) \mu m$  and  $O(10) \mu rad$ , respectively. (One-order better than the requirements.) Quartz supported by plastics.



Quartz flatness ~10  $\mu$ m.



## Quartz Bar Box

- Support quartz bar with PEEK buttons, enabling total reflection at the quartz surface.
- Box made of aluminum honeycomb panels (low mass).





### MCP-PMTs (Micro Channel Plate PMTs)

- Developed by Nagoya Univ. and Hamamatsu Co.
   4 x 4 channels per PMT. 32 PMTs per TOP module.
   square shape
   cross-sectional view
   MCP
- QE > 24% at 380 nm (NaKSbCs photocathode).
- Collection Eff. = 50-55% (~MCP aperture ratio).
- Gain of  $2 \times 10^6$  at ~3.4 kV; 1 photon detection.
- Transit time spread (TTS) ~ 40 ps.
- Work in 1.5 T magnetic field.



### Electronics

#### Based on a waveform-sampling ASIC.

G.Varner, "Experience with the first generation deep sampling ASICs IRS and BLAB3", Workshop on Timing Detectors: Electronics, Medical and Part. Phys. Appl., Cracow, 2010. G.Varner, "Deeper Sampling CMOS Transient Waveform Recording ASICs", TIPP 2011.





 $4 \times 10^{9}$  samples / sec. Chip intrinsic time resolution of <25 psec. Works for >5 µs trigger latency; multi-hit buffering for 30 kHz L1 trigger accept.

Calibration of the time and the charge requires a significant learning curve.

#### Backup Electronics for Performance Tests

K. Inami, "TOP counter prototype R&D", RICH 2010.

Based on constant fraction discriminator (CFD).

MCP-PMT 16 channels are merged into 4 at the MCP-PMT socket.



Time resolution  $\sim$  50 psec.

Calibration relatively simpler. Can be used for TOP performance tests.

## Beam Test Overview

Performance of the TOP detector tested using 2.0 GeV/c e<sup>+</sup> beam at LEPS (Laser Electron Photon beamline at SPring-8).



- Data taken for both IRS3B and CFD readout.
- Beam timing from the accelerator RF with a resolution of < 25 psec.
- Test highly supported by the LEPS collaborators.

#### Beam Test Preliminary Output

Data taken by CFD readout

MC



- Good agreement of the Cherenkov ring image between data and MC.
  - The distribution for data obtained without event selection so far.
  - Channel-by-channel time origin alignment using laser data.
- Will estimate the  $\beta$  resolution for e<sup>+</sup> (directly related to the PID performance).

Analysis ongoing also for the data taken with IRS3B readout.

# Summary

- TOP detector developed for barrel PID at Belle II.
  - Quartz: maintain Cherenkov-photon efficiency and paths.
  - MCP-PMTs: detect photons with QE > 24% and TTS ~ 40 psec.
  - Electronics: waveform sampling, CFD for performance test.
- Performance test using full-size prototype at LEPS/SPring-8.
  - Good agreement of Cherenkov-ring image btw data and MC.
  - Analysis ongoing for evaluating PID performance.

# Backup Slides

#### Bulk transmittance measurement



 $I_0(1 - R_0)\tau(1 - R_1) = I_1$ 

T: bulk transmittance

I<sub>0</sub>, I<sub>1</sub>: laser intensity (Meas. by PD) R<sub>0</sub>, R<sub>1</sub>: intensity for reflection (Calc. by Fresnel's Eq.)

Requirement: > 98%/m

#### Surface reflectance measurement



 $I_0(1-R_0)\alpha^N e^{-\frac{L}{\Lambda}\sqrt{1+\left(\frac{bN}{L}\right)^2}}(1-R_1) = I_1$ 

α: surface reflectanceN: number of bouncesL/b: quartz length/thickness

 $I_0, I_1$ : laser intensity (Meas. by PD)  $R_0, R_1$ : intensity for reflection (Calc. by Fresnel's Eq.)  $\Lambda$ : absorption factor (Calc. from bulk transmittance)

Requirement: > 99.90%





#### Full TOP, measured numbers

| Rbias+OP846 | 40 W   |
|-------------|--------|
| ASICs       | 57.6W  |
| SCRODs      | 11.2W  |
| HV          | 13.6W  |
| Total       | 122.4W |

May be possible to tune biases lower

About 31W per board-stack module



### Beam Test at LEPS



### Time Origin Calibration Using Laser Data

Preliminary

Channel-by-channel time origin alignment using the first peak of the TDC distribution.

Laser image after time origin alignment

