

Properties of the jet production in pp collisions

Alexander Solodkov
IHEP, Protvino
on behalf of ATLAS collaboration

The 2013 Europhysics conference on High Energy Physics 18-24 July 2013 Stockholm, Sweden

Outline

• Measurement of the flavour composition of dijet events in pp collisions at \sqrt{s} =7 TeV with the ATLAS detector

Eur. Phys. J. C 73(2013) 2301

- Measurement of multi-jet cross-section ratios and determination of the strong coupling constant in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector
 - ATLAS CONF-2013-041
- Measurement of k_t splitting scales in $W \rightarrow lnu$ events at $\sqrt{s} = 7$ TeV with the ATLAS detector
 - Eur. Phys. J. C 73 5 (2013) 2432

- Talk is based on analysis of low-pileup 2010 data
- ... see two more ATLAS talks on jet cross-sections and jet properties during QCD session

I. Flavour composition

- Three mechanisms of heavy flavour production in a dijet system:
 - Heavy flavour quark pair creation → pQCD
 - Heavy flavour quark excitation → PDFs

- Gluon splitting → non-perturbative QCD
- The analysis aims to measure fractions of the six combinations of dijet events: $f_{BB}f_{CC}f_{UU}f_{BU}f_{CU}f_{BC}$
 - determined from the fit of kinematic variables
 (combinations of momenta of tracks assigned to the secondary vertex inside jet) with MC based templates
 for each jet flavour (light jet, c-jet, b-jet and 2b-jet)
 - no flavours assigned to individual jets

Fit results

Average fake vertex probability in light jets

2b-jet admixture

$$A_b = \frac{f_{BU}^{subleading_B}}{f_{BU}^{leading_B}} - 1$$

- Average fake vertex probability in light jets in data is well reproduced by MC.
- Large contribution of additional 2b-jet template with respect to Pythia
 - Sensitive to gluon splitting
 - Larger contribution for higher jet p_T
- Bottom dijet asymmetry is better described by POWHEG (NLO ME) + Pythia than by Pythia only (LO ME).

Measured flavour composition

- In agreement with LO and NLO MC predictions, except for bottom+light jet fraction.
- Measured BU fraction is higher than predictions at $p_T>100$ GeV.

II. Multi-jet ratio measurement

- Study ratio of events with ≥ 3 jets and ≥ 2 jets
 - cancellation of systematic uncertainties in ratio
 - \geq 3 jets suppressed by α_s
 - Determine α_S (M_Z) and α_S (Q)

Event ratio

$$R_{3/2} \left(p_T^{\text{lead}} \right) = \frac{d\sigma_{N_{\text{jets}} \ge 3}}{dp_T^{\text{lead}}} / \frac{d\sigma_{N_{\text{jets}} \ge 2}}{dp_T^{\text{lead}}}$$

Ratio of the inclusive jet cross-sections (similar sensitivity)

$$N_{3/2}\left(p_T^{\rm all\,jets}\right) = \sum_{i}^{N_{\rm jets}} \frac{d\sigma_{N_{\rm jets}\geq 3}}{dp_{T,i}} / \sum_{i}^{N_{\rm jets}} \frac{d\sigma_{N_{\rm jets}\geq 2}}{dp_{T,i}}$$
 all jets in the event

.000000

Scale Dependence of pQCD Calculations

- α_s is determined from comparison to theory prediction
 - fixed-order NLO perturbative QCD calculations with non-perturbative corrections
- $R_{3/2}$ predictions use renormalization and factorization scales set to the leading jet $p_T(\mu_R = \mu_F = p_T^{lead})$
- For $N_{3/2}$, the scales are set to the p_T of each jet

 $N_{3/2}$ is more stable against the choice of scale \Rightarrow use it for α_S extraction

Measurement of $N_{3/2}$ and fit of $\alpha_s(M_Z)$

- $\alpha_{\rm S}({\rm M_Z})$ is extracted by comparison to NLOJet++ predictions made with different values of $\alpha_{\rm S}({\rm M_Z})$ [0.110, 0.130]
 - Least Squares fit to data, minimizing χ 2 w.r.t. $\alpha_s(M_Z)$
 - Over 6 p_T bins ∈ [210, 800
 GeV] simultaneously
- Correlated systematic uncertainties included as nuisance parameters
- Theoretical uncertainties estimated by altering theoretical predictions

$$\alpha_S(M_Z) = 0.111 \pm 0.006 (\text{exp.})_{-0.003}^{+0.016} (\text{theory})$$

PDG value –
$$\alpha_S(M_Z) = 0.1184 \pm 0.0007$$

In agreement

The running of as

- $\alpha_S(Q)$ is determined by extracting $\alpha_S(M_Z)$ from each pT bin individually
- These $\alpha_S(M_Z)$ are transformed to $\alpha_S(Q)$ using 2-loop approximate RGE solution
 - Q = average jet pT for that bin
- Scale probed is extended beyond previous measurements to Q = 800 GeV

Data

L = 36 pb⁻¹ at 7 TeV (2010) |η| < 2.8, p_Tlead > 60GeV

Confirms scaling behavior at high Q

III. K_T splitting scales in W+jets events

- K_T clustering algorithm finds at every step minimum among all distances between momenta
 - $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}$
 - and distance to the beam $d_{iB} = p_{ti}^2$
- If minimal distance d_{ij} is smaller than distance to the beam d_{iB} , *i*-th and *j*-th momenta are combined together, otherwise new jet is created
- Input for cluster sequence in W+jets events everything except the W decay products
 - Use W only as clean but abundant signal
- Define splitting scale $\sqrt{d_k}[GeV]$ as the $\sqrt{d_{min}}$ found at the step going from $k + 1 \rightarrow k$

Example

Step 0: Input momenta

Step 1: Merge $3 \rightarrow 2$

Step 2: Merge $2 \rightarrow 1$

Step 3: Merge $1 \rightarrow 0$

K_T observables

- 7 observables were measured in W+jets events (with W $\rightarrow \mu\nu$, W $\rightarrow e\nu$)
 - Splitting scale $\sqrt{d_k}$ for $0 \le k \le 3$
 - Clean separation of soft and hard regions
 - Ratio of subsequent scales $\sqrt{\frac{d_{k+1}}{d_k}}$ for $0 \le k \le 2$
 - Systematics cancel to some extent
 - Cut on $\sqrt{d_k} > 20$ GeV to avoid domination by non-perturb. Effects
- K_T measure identifies most singular pair in each step of the sequence
 - Measurement can probe QCD evolution
 - provides useful test of LO and NLO QCD
 Monte-Carlo generators and analytical calculations
 - $\sqrt{d_{k+1}/d_k} \rightarrow 1$ is of particular interest

Example

Step 0: Input momenta

Step 1: Merge $3 \rightarrow 2$

Step 2: Merge $2 \rightarrow 1$

Step 3: Merge $1 \rightarrow 0$

Signal and background before unfolding Splitting scale $\sqrt{d_0}$ vs $\sqrt{d_3}$

- Hardest and softest splitting scale measurement
 - Only muon results displayed here, electron channel is similar
 - Good Data/MC agreement (ALPGEN+HERWIG as signal MC)
 - At high $\sqrt{d_3}$: sensitive to 4-jet production ⇒ large $t\bar{t}$ background

Unfolded results

- ALPGEN+HERWIG (ME+PS) work very well at hard tail
- NLO+PS generators are low at hard tail (even in $\sqrt{d_0}$)
- HERWIG-based PS generators are best in soft (resummation) region
- Excess of SHERPA and MC@NLO in intermediate region

	Winc	+1jet	+2-5jet	+≥6jet
ALPGEN+HERWIG	LO	LO	LO	PS
SHERPA (MENLOPS)	NLO	LO	LO	PS
MC@NLO+HERWIG	NLO	LO	PS	PS
POWHEG+PYTHIA6	NLO	LO	PS	PS
POWHEG+PYTHIA8	NLO	LO	PS	PS

Unfolded results for ratio observables

- HERWIG-based PS generators provide good description of leading ratio
- Outlier POWHEG+PYTHIA6
- Higher ratios: Most generators just outside uncertainty

Conclusions

- Analysis of jet flavour composition of dijet events is an excellent tool to study perturbative QCD and to validate MC generators
 - Bottom-light flavour composition is found to be larger than the NLO or LO predictions.
 - Other flavour compositions are reproduced by the predictions.
- New observable $N_{3/2}$ in analysis of the multi-jet events provides direct measurement of strong coupling constant
 - $-\alpha_{\rm S}({\rm M_Z})$ derived with global fit is in agreement with PDG value
 - Measurement of $\alpha_s(Q)$ is extended to Q = 800 GeV
- Measurement of k_T splitting scales in W→lv events improves the theoretical modeling of QCD effects and provides useful test of LO and NLO QCD Monte-Carlo generators
 - LO multi-leg predictions perform better than NLO+PS generators especially in hard tails
 - Significant differences found in soft region

BACKUP

Calorimetry in ATLAS

High mass (2.6 TeV) dijet event

- Fine granularity calorimeters
 - $-\Delta \eta \times \Delta \varphi = 0.025 \text{ x } 0.025 \text{ in EM barrel}$
 - 0.1 x 0.1 elsewhere (0.2 x 0.1 outer most layer)
- Good EM, HAD longitudinal segmentation (up to 7 samplings in barrel)
- Good η coverage: EM $|\eta| < 3.2$, HAD $|\eta| < 4.9$
- Excellent jet energy resolution: $\sigma/E \approx 0.55/\sqrt{E} + 5/E$

Jet Reconstruction and Calibration

Jet energy scale and its uncertainty

- Dominant source of experimental uncertainty is the jet energy scale
- Six (+1 in forward bins) JES components
- Calorimeter response is the major one with complex correlation.
- The others are independent and 100% correlated between bins
- In-situ techniques confirm the single particles based JES uncertainty
- In case of ratio measurements most of JES uncertainty is canceled out

