Photon, di-photon and photon+jet production measured with the ATLAS detector

EPS-HEP2013
Stockholm 18-25 July

Mark Stockton
McGill University
on behalf of the ATLAS collaboration
Today's talk will concentrate on the recent photon cross section results from ATLAS:
- Inclusive photons
- Photon+jet dynamics
- Di-photons

For single photon production there are three key processes:

- Compton
- Annihilation
- Fragmentation

Similarly for di-photons:

- Born
- Box
- Fragmentation
Motivation

- In the new phase space of the LHC, photon measurements:
 - Test perturbative QCD
 - Probe gluon content of the proton
 - Understand photon background for Higgs and New Physics searches
- Photon-jet + di-photon measurements also improve our understanding of the fragmentation component

- High luminosity → High statistics
- Precise detectors → Low systematics
- Reduced uncertainties → more stringent tests of existing models

Pseudorapidity: \(\eta = -\ln \left(\tan \frac{\theta}{2} \right) \)
Reconstruction

- Reconstruct photons from EM calorimeter cells
 - No track → unconverted
 - 1 or 2 track matching → converted
- Main background from π^0 in jets
- Use shower shape variables in first layer

- "Tight" selection to identify signal γ
- $\varepsilon_{ID} \rightarrow$ how many reco photons pass the tight selection
• Require the photon to be isolated:
 • E_T^{iso} is the energy in a cone of 0.4
• NLO: all partons in the cone
• LO: all particles in the cone

• Experiment:
 • Remove photon cluster from the cone
 • Correct for underlying-event and pile-up effects using the "jet-area" method
In 2010 measurement reached 400 GeV
2011 reaches 1 TeV

Apply $E_T^{\text{iso}} < 7$ GeV
- 4 GeV in 2010

Highest disagreement to NLO at low E_T

LO MC's match shape well, but differ in normalisation

Above 700 GeV: large PDF (gluon) uncertainties

At low E_T 5% difference between CT10 and MSTW2008

From NLO (Jetphox) fragmentation negligible >500 GeV
Inclusive photon

Also measured:
- For $1.52 < |\eta| < 2.37$
- As a function of η
- Total cross sections

| σ(pb) | $|\eta|<1.37$ | $1.52<|\eta|<2.37$ |
|-------------|-----------------|---------------------|
| ATLAS | 234 ± 2(stat)$+13-9$(syst)±4(lumi) | 122 ± 2(stat)$+9-7$(syst)±2(lumi) |
| CT10 | 203 ± 25 | 105 ± 15 |
| MSTW | 212 ± 24 | 109 ± 15 |

ATLAS Preliminary

$\int L dt = 4.7 \text{ fb}^{-1}$

$E_T^* > 100 \text{ GeV}$

ATLAS Preliminary
• Study photon+jet system to gain insights into size of fragmentation contribution, the likely source of disagreement with theory

• Two measurements made with 2010 data:
 • Investigating the same/opposite side nature of the photon/jet probes different fragmentation fractions
 • Calculate σ for different y_{jet} cuts and as a function of E_T^{γ}
STDM-2012-18

- **NEW**: Photon-jet dynamics (2010 data)
- Anti-kt jets $R = 0.6 \ |y^{jet}| < 2.37$
- $E_T^{iso} < 4 \text{ GeV} \ \gamma$ - jet separation $\Delta R > 1.0$
- Measure cross section for: $E_T^\gamma, p_T^{jet}, |y^{jet}|, \Delta \phi^{\gamma j}, m^{\gamma j}$ and $|\cos \theta^{\gamma j}|$
- Good agreement in most variables

- Same E_T^γ difference as prev results
- Experimental errors often smaller than theoretical
- $\Delta \phi^{\gamma j} > \pi/2$ for NLO, Pythia and Sherpa perform better than Herwig
- Measuring $|\cos \theta^{\gamma j}|$ shows good agreement to NLO
 - Apply extra constraints $|\eta^{\gamma} + y^{\text{jet}}| < 1.185$, $m^{\gamma j} > 161 \text{GeV}$ and $|\cos \theta^{\gamma j}| < 0.83$ to remove any distortions due to the restrictions E_T^{γ}, η^{γ}, p_T^{jet}, y^{jet}

- Region at high $|\cos \theta^{\gamma j}|$ most sensitive to fragmentation
 - Shape much closer to direct contribution (differ due to spin of exchanged particle)
 - Also can be investigated at low E_T^{γ}, p_T^{jet} and $M^{\gamma j}$
In 2011 data there is also an update of the di-photon σ
 - Key to understand backgrounds to di-photon searches

Need to remove jet-jet and γ-jet background events
Use 2 subtraction techniques:
 - 2D Template Fit with leakage correction
 - 2x2D Sidebands, used previously

Photon selection:
 - Two isolated (<4 GeV) photons $E_T > 25, 22$ GeV
 - Separated by $\Delta R > 0.4$
Di-photon

Variables for σ: $m_{\gamma\gamma}$, p_T, $\Delta\phi_{\gamma\gamma}$, and $\cos\theta^*_{\gamma\gamma}$

- **Sherpa** does better at modelling the shape than **Pythia**
 - Both are rescaled by a factor of 1.2
 - Sherpa has additional NLO contributions to help model p_T, $\gamma\gamma$
 - Sherpa different to data at large $m_{\gamma\gamma}$ and $\cos\theta^*_{\gamma\gamma}$
• Variables for σ: $m_{\gamma\gamma}$, p_T, $\Delta \phi_{\gamma\gamma}$ and $\cos \theta^*_{\gamma\gamma}$

• **Sherpa** does better at modelling the shape than **Pythia**

• **NNLO** does better than **NLO**
 • Without soft gluon resummation see excess at $\Delta \phi_{\gamma\gamma} \approx \pi$
 • NNLO lacks the fragmentation contribution, see high $|\cos \theta^*|$
Summary

- New results on inclusive, photon+jet and di-photon cross sections have been presented.
- In general, all are in good agreement with MC.
 - As before highest disagreement at low E_T.
- Measurements of photon+jet and di-photon systems show the impact of the fragmentation contribution.
 - Shows the importance of NNLO calculations.
ATLAS Measurements

- Inclusive photons

- Photon+jet
 - [2010] dynamics:

- Diphotons
 - http://link.springer.com/article/10.1007%2FJHEP01%282013%29086

- [dataset analysed] *=sub-set of full dataset (880nb⁻¹)
- Latest results in red
- Jet algorithm used by ATLAS with R=0.4 and 0.6
- Infrared/collinear safe
- Regular cone-like jets
- Clustering for $d_{ij} <$ jet radius R

$$d_{ij} = \min \left\{ K_{t_i}^{-2}, K_{t_j}^{-2} \right\} \times \frac{(\Delta \Phi_{ij}^2 + \Delta \eta_{ij}^2)}{R^2}$$

- Jets are formed from clusters of energy (for noise suppression)
- Jets are calibrated to correct the calorimeter energy response and restore the Jet Energy Scale
 - Non-compensation
 - Dead material
 - Out of cone effects

• Taking the inclusive photon results from both ATLAS and CMS it was shown that the gluon PDF uncertainty can be reduced by 20%.

L. Carminati, et al., EPL 101 (2013) 61002

• Similar studies of the ATLAS photon+jet results show improvements in the quark PDFs too.

• With full error correlations the PDF impact could be even more significant.