

Search for direct chargino production in AMSB scenarinos based on a disappearing-track signature with the ATLAS detector

EPSHEP 2013 Stockholm, Sweden, 18-24 July, 2013

Anomaly Mediated SUSY Breaking (AMSB) scenario

- No SUSY-FCNC/CP problem
- No gravitino overproduction problem
- Wino can be a good candidate for dark matter
- M_h ~ 126 GeV can be realized due to large squark mass ~ O(10-100) TeV
- $m_{\tilde{R}}: m_{\tilde{W}}: m_{\tilde{g}} \approx 3:1:8$, LSP = Pure neutral wino
- Δm_{γ} (chargino/neutralino) $\approx 160 \text{ MeV}$
 - Measurable lifetime ($\tau_{\gamma\pm} \approx 0.2$ ns $\rightarrow c\tau_{\gamma\pm} \approx O(1-10)$ cm).
 - Decay inside the tracking detectors.
- Chargino decays into a neutralino + soft pion. (undetactable) (E_Tmiss)
- →Chargino is observed as a "<u>disappearing track</u>"

Direct chargino production

 $\pi^{\pm} \rightarrow$ Undetactable

Number of TRT Hits

TeV, $Ldt = 20.3 \text{ fb}^{-1}$) **ATLAS** Preliminary

Monojet selection

- **Topological Trigger**
- Jet + E_T^{miss} + $\Delta \Phi$ (jets, E_T^{miss})

Disappearing track selection

- **Isolation from hadronic activity**
- $p_T cone 40 / p_T < 0.04$
- $\Delta R(jets, track) > 0.4$

- Dedicated trigger for the analysis
- No lepton ($p_{\tau} > 10 \text{ GeV}$)
- \geq 1 jets ullet
- Leading jet $p_T > 90 \text{ GeV}$
- $E_{\tau}^{miss} > 90 \text{ GeV}$
- $\Delta \Phi$ (jets, E_T^{miss}) > 1.5

- **Quality requirements** lacksquare
 - Probability(χ^2 , ndf) > 0.1
 - $|d_0| < 0.1 \text{mm}, |z_0 \sin\theta| < 0.5 \text{mm}$
- No holes in Pixel and SCT detector.
- **Disappearing track selection**
- Number of TRT Hits: N(TRT) < 5
- **Short-length track reconstruction**
 - Number of SCT Hits: $N(SCT) \ge 2$

- **Dedicated track reconstruction** for the analysis.
- Achieved **O(10 100) times higher reconstruction efficiency** for charginos with small lifetime than that for 7 TeV result.

Background estimation

$\widetilde{\chi}_1^{\pm}$ decaying into $\widetilde{\chi}_1^0 + \pi^{\pm}$	Background tracks	Signal Region	Control Sample
Badly mismeasured in p _T due to a wrong combination of space-points High-p_charged hadron	p _T -mismeasured track (Main Background)	d ₀ <0.1 mm	p_T spectrum does not depend on the impact parameter $\rightarrow 1 \text{ mm} < d_0 < 10 \text{ mm}$
Lepton failing to satisfy identification criteria due to	Interacting hadron track	N(TRT) < 5	p _⊤ spectrum for interacting hadrons is the same as that for non-interacting hadrons (J.Phys.G37 (2010) 075021) → N(TRT) ≥ 25
large bremsstrahlung or scattering reconstructed track	Unidentified lepton	N(lepton) = 0	N(lepton) = 1 \bigotimes Probability (disappearing)

\rightarrow Estimated by $2 \rightarrow ee$, $\mu\mu$ tag & probe method

How to estimate: data-driven method

- Derive background track p_T shapes from their data control samples.
- Perform a "Signal + Background" template fit" to candidate track p_{T} .
- Track p_T shapes in control samples must be the same as those in SR.

Mismeasured track p_T shape for QCD control samples

- Main background in $p_{T} > 100$ GeV is p_{T} -mismeasured tracks.
- p_T spectrum does not depend on the impact parameter (d_0) .
- This feature is confirmed in QCD enriched data samples. $(E_{T}^{miss} < 90 \text{ GeV})$

Results

1. Counting experiment

Signal Region	p _T > 200 GeV
Expected events	18.0 ± 4.6
Observed events	13

- Chargino tracks have high p_{T} and the best sensitivity derives from the region with $p_{\tau} > 200 \text{GeV}$.
- Expectation from the Standard

Interpretation

- No significant excess beyond the Standard Model.
- In AMSB scenarios ($\tau_{\chi\pm} \approx 0.2$ ns, $\Delta m_{\chi} \approx 160$ MeV), chargino mass < 270 GeV is excluded at 95% C.L.
- \rightarrow These constraints are generally valid in Wino LSP scenarios.

Model BG is derived by BG-only fit in the region with $p_{\tau} < 75$ GeV.

Counting experiment shows that there is no significant excess in the high p_{T} region.

Perform a "Signal + Background" template fit in 15 GeV < p_{τ} < 1000 GeV to extract a contribution from signal.

Reference: ATLAS-CONF-2013-069, July, 2013

Shingo Kazama (The University of Tokyo) for the ATLAS Collaboration

