

A search for heavy long-lived sleptons has been performed on a data sample of 15.9± 0.45 fb⁻¹ from proton-proton collisions at a center-of-mass energy $\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC in 2012

Physics motivations

- Heavy long lived particles (LLPs) are predicted by many Standard Model (SM) extensions.
- In Supersymmetry (SUSY), sleptons (\tilde{l} , superpartners of leptons), squarks and gluinos (\tilde{q} , \tilde{g} , superpartners of quarks and gluons, respectively) might have long lifetimes and decay outside the detector volume.
- In the framework of gauge-mediated SUSY breaking (GMSB) with the light stau ($\tilde{\tau}_1$) is the next to lightest supersymmetric particle (NLSP) and may be long lived:
 - \checkmark GMSB events contain two $\tilde{\tau}_1$ (mostly right-handed in the considered GMSB points);
 - ✓ direct production dominates and allows to set model independent limits;
 - \checkmark indirect limits set on $\tilde{\chi}_1^0$ and $\tilde{\chi}_1^{\pm}$ masses.

Analysis strategy

β calibration

Heavy charged LLPs behave like heavy muons releasing energy by ionisation as they pass through the ATLAS detector:

Select high momentum (p) particles having speed $\beta < 1$, measure their mass through the relation:

From Time-Of-Flight (TOF) $m = \frac{P}{Q}$ From track measurements in measurement Muon Spectrometer (RPC + MDT) and Calorimeters

- Main background source (high-p muons with mismeasured β) estimated form data by repeated combination of the p of a candidate passing the selection with a random β extracted from muons β distribution;
- Signal efficiency evaluated from simulation, ToF distributions smeared according to data, smearing validated using $Z \rightarrow \mu^+ \mu^-$ simulation.
- Data sample divided in two exclusive parts: two candidates, passing a loose selection (Signal Region) or if not, one candidate passing a tight selection (Control

Slepton search with the ATLAS detector **Inner Detector**

Silicon Pixel:

Energy loss measurement (dE/dx) used as consistency test for β .

Calorimeters

• LAr + Tile:

✓ Timing resolution: σ_t ~2 ns for an energy deposit of 1 GeV. Muon Spectrometer

Monitored Drift Tubes (MDT):

✓ Precision momentum measurement.

√σ, ~0.8 ns.

 $\checkmark \beta$ obtained by a successive track re-fit.

Resistive Plate Chambers (RPC):

✓ Intrinsic σ_t ~1 ns, digitised signal is sampled with a 3.12 ns

- \succ Dedicated calibration of timing crucial to this analysis.
- > Time-of-Flight (ToF) is sensitive to relative offsets in time calibration between different detector elements.
 - In ideal case, energetic muons pass detector elements at t₀=0.
 - Means of t₀ distributions used to correct calibration by shifting the measured t_0 .
- Widths used as resolution of time measurement in β^{-1} average and to smear simulation accordingly.

 \succ ToF to β :

Region, used to assess systematic uncertainties).

- granularity.
- $\checkmark \beta$ measurements averaged over different detector elements.

0.7 0.8 0.9 1 1.1 1.2 1.3

Source	Uncert. (%)
Theoretical uncertainty on signal size	3.5
Total uncertainty on signal efficiency	3.8
Luminosity	2.8
Background estimate	8-21

Elisa Musto¹, for the ATLAS Collaboration Israel Institute of Technology, Physics Department