

B⁰_s decays at Belle

European Physical Society Conference on High Energy Physics

Felicitas Thorne

For the Belle collaboration

July 20th, 2013

Introduction

MHEPH Outline

$$\bar{\mathbf{B}}_{\mathrm{s}}^{0} \rightarrow \Lambda_{\mathrm{c}}^{+} \pi^{-} \bar{\Lambda}$$
NEW!

published in arXiv:1304.6931 [hep-ex] submitted to Phys.Lett.B

A D > A D >

The Υ (5S) data sample

MHEPH

$m B^0_s ightarrow m J/\psi \ K^+K^ (121 { m fb}^{-1})$

final results

- $\frac{B_s^0 \rightarrow J/\psi \phi}{\text{important mode for CP violation:}}$ ϕ_s sensitive to new physics $\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (sys) rad}$
- $B_s^0 \to J/\psi f_2(1525)$

branching ratio measured by LHCb:

$$\mathrm{B} = \left(2.61 \pm 0.20^{+0.52}_{-0.46} \pm 0.20\right) \times 10^{-4}$$

• ${\rm B_s^0}
ightarrow {\rm J}/\psi \; {\rm K^+K^-}$

only measurement by LHCb $\mathcal{B} = (7.70 \pm 0.08 \pm 0.39 \pm 0.60) \times 10^{-4}$

• <u>S-wave</u> contriubion in ϕ mass region

Advantage of Belle measurement

Absolute measurement of branching fractions instead of measurement relative to reference decay channel as used by hadron collider experiments.

Institute of High Energy Physics OAW		
${ m B_s^0} ightarrow{ m J}/\psi{ m K^+K^-}$	$(121 fb^{-1})$	final results

Applied PDF model for signal components (J/ $\psi ightarrow \mu^+ \mu^-$):

channel	${\sf J}/\psi ~\phi$	$J/\psi K^+ K^{other}$	J/ψ f' ₂ (1525)
ΔΕ	double Gaussian	double Gaussian	double Gaussian
$m(K^+K^-)$	nonrelativistic	Argus	nonrelativistic
	Breit Wigner		Breit Wigner

- double Gaussian is replaced by sum of Crystal Ball and Gaussian pdf for the J/ $\psi \to e^+e^-$ channel
- combinatorial background described by first order polynom in ΔE , Argus function in m (K⁺K⁻)
- PDF model was tested extensively on generic MC data

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

e+e-	$\mu^+\mu^-$
168 ± 13.5	158 ± 13
83 ± 17	67 ± 14
34 ± 10	26 ± 8
$\textbf{232} \pm \textbf{19}$	$\textbf{300} \pm \textbf{20}$
	e^+e^- 168 \pm 13.5 83 \pm 17 34 \pm 10 232 \pm 19

$$\mathcal{B}(\mathrm{B_s^0} \to \mathrm{J}/\psi \ \mathrm{f_2}^{\prime} \ (1525)) = (0.26 \pm 0.06 \ (\mathrm{stat}) \pm 0.02 \ (\mathrm{syst}) \pm 0.05 \ (\mathit{f_s})) \times 10^{-3}$$

 $\mathcal{B}\left({\rm B}^{0}_{\rm s} \to {\rm J}/\psi ~{\rm K}^{+}{\rm K}^{-}\right) = (1.01 \pm 0.09~{\rm (stat)} \pm 0.10~{\rm (syst)} \pm 0.18~{\it (f_s)}) \times 10^{-3}$

All determined branching ratios are in good agreement with the results from hadron collider experiments!

$(121 \, {\rm fb}^{-1})$

final results

S-wave contribution within ϕ mass region

S- and P-wave distinguished via $M(K^+K^-)$ distribution instead of performing angular analysis as used by LHCb and CDF Assumptions:

- $\bullet~$ S-wave contribution originates from $B^0_s \rightarrow~J/\psi~K^+K^-$
- P-wave contribution originates from ${\rm B_s^0} \to ~{\rm J}/\psi ~\phi$

Assumptions verified on helicity angular distributions for $B^0_s\to~J/\psi~K^+K^-$ and $B^0_s\to~J/\psi~\phi$

Mass range	1.009 GeV – 1.028 GeV	
CDF	$(0.8 \pm 0.2)\%$	
this analysis	$(0.47\pm0.07({ m stat})\pm0.05({ m syst})^{+4.5}_{-0}({ m f_0}))\%$	
Mass range	1.007 GeV – 1.031 GeV	
LHCb	$(1.1\pm0.1^{+0.2}_{-0.1})\%$	
This analysis	$(0.57\pm0.09(stat)\pm0.06(syst)^{+4.4}_{-0}(f_0))\%$	e •0

SHEPH

 ${
m B_s^0}
ightarrow {
m J}/\psi {
m K}^+{
m K}^-$

$B_{s}^{0} \rightarrow J/\psi \ K^{+}K^{-} \qquad (121 \text{fb}^{-1}) \qquad \text{final results}$

Include $B_s^0 \rightarrow J/\psi f_0$ (980) (S-wave) component:

 $PDF(S-wave) = a^2 \cdot Flatte + Argus + 2a \cdot \cos(\theta) \cdot \sqrt{Flatte \cdot Argus}$

a = 1.96: relative normalization between f_0 (980) and K^+K^-

 $\theta = -259^{\circ}$: phase (due to interference)

Results:

- Signal yields vary approximately within 1 σ
- Strong enhancement of the S-wave contribution in ϕ mass region

earch for near threshold peak

Reconstruction modes for $K^0_S,$ Λ and Λ^+_c and applied selection criteria.

Parameter	Selection criterion	
IP (charged tracks)	$ dr < 0.25 \mathrm{cm}$ and $ dz < 1 \mathrm{cm}$	
$K_{\rm S}^{0} \rightarrow \pi^{+}\pi^{-}$	$ { m M}(\pi^+\pi^-)-{ m M}({ m K}^0_{ m S}) <10{ m MeV}/c^2$	
$\Lambda o p \pi^-$	$ M(\rho \pi^{-}) - M(\Lambda) < 4 MeV/c^2$	
$\Lambda_{c}^{+} \rightarrow p \mathrm{K}^{-} \pi^{+}$		
$\Lambda_{\rm c}^+ ightarrow ho { m K}_{ m S}^0$	$ \mathrm{M}(\mathit{rec})-\mathrm{M}(\Lambda_{\mathrm{c}}^{+}) < 10\mathrm{MeV}/\mathit{c}^{2}$	
$\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+}$ J		
M _{bc}	$M_{bc} > 5.3 GeV/\textit{C}^2$	
ΔΕ	$ \Delta \mathrm{E} < 0.3\mathrm{GeV}$	

fit projections for $-71\,MeV < \Delta E < -23\,MeV$ and $5.405\,GeV/c^2 < M_{bc} < 5.427\,GeV/c^2$

$\vec{\mathrm{B}}^{0}_{\mathrm{s}} \rightarrow \Lambda^{+}_{\mathrm{c}} \pi^{-} \bar{\Lambda} \quad (121 \mathrm{fb}^{-1}) \quad \text{arXiv:} 1304.6931 \text{ [hep-ex]}$

Obtained signal yields:

Channel	$\Lambda_{\rm c}^+ ightarrow {\it ho} {\rm K}^- \pi^+$	$\Lambda_{ m c}^+ ightarrow { m ho} { m K}_{ m S}^0$	$\Lambda_{\rm c}^+ ightarrow \Lambda \pi^+$
rec. efficiency [%]	12.5	5.9	8.7
Yield [events]	20.3	3.0	1.9

Obtained branching ratio

$$\mathcal{B}(\bar{B}^0_s \to \Lambda_c^+ \pi^- \bar{\Lambda}) = (3.6 \pm 1.1 (\text{stat})^{+0.3}_{-0.5} (\text{sys}) \pm 0.9 (\Lambda_c^+) \pm 0.7 (N_{\bar{B^0_c}})) \times 10^{-4}$$

measured at 4.4 σ significance (systematic included) similar to $\mathcal{B}(B^- \rightarrow \Lambda_c^+ \bar{p} \pi^-) = (2.8 \pm 0.8) \times 10^{-4}$

э

$\rightarrow \Lambda_{\rm c}^+ \pi^- \bar{\Lambda}$ (121fb⁻¹) arXiv:1304.6931 [hep-ex]

Near threshold enhancement

- extract signal yield in baryon-antibaryon mass bins, apply efficiency correction, calculate differential branching fractions
- hint of threshold enhancement, however, statistic is too low to observe effect

 $\bar{\mathbf{B}}^{0}_{a}$

${ m B_s^0} ightarrow\,{ m J}/\psi~{ m K^+K^-}$

- absolute measurement of the branching ratios for $B_s^0 \rightarrow J/\psi \phi$, $B_s^0 \rightarrow J/\psi f_2$ (1525) and $B_s^0 \rightarrow J/\psi K^+K^-$
- all branching ratios in agreement with hadron collider results
- results for S-wave contribution in ϕ mass region smaller than LHCb values but in agreement with CDF results
- S-wave contribution strongly depends on a possible $B^0_s \to J/\psi \: f_0 \: (980)$ component and the applied model

$ar{ m B}^{ m 0}_{ m s} \ o \ \Lambda^+_{ m c} \pi^- ar{\Lambda}$

- first evidence for baryonic \mathbf{B}^0_s decay
- $\bullet\,$ obtained branching ratio similar to $B^-\,\to\,\Lambda_c^+\bar{\rho}\pi^-$
- statistic too low to observe threshold enhancement

nin.

Thank you for your attention!

FWF grant number P22742-N16

Felicitas.Thorne@oeaw.ac.at