

Top quark mass measurements in ATLAS

HEP 2013 Stockholm 18-24 July 2013 Gabriele Compostella (MPP-Munich) on behalf of the ATLAS Collaboration

Photo by Werner Nystrand on flickr

Top quark overview

LHC is a top quark factory, with a large pair production cross section, mainly via gluon fusion (85%)

- the top quark decays before hadronization, this provides a unique opportunity to study a "bare" quark
- the top quark mass m_{top} is a fundamental parameter of the SM
- m_{top} is related to m_{W} and m_{H}

 a precise determination of m_{top}, m_w and m_H combined with EW precision measurements allows to perform a stringent test of SM and beyond SM models

Top quark pair decay signatures

Top quark decays almost exclusively to Wb, tt pair decay signatures categorized from W decays

(other signatures involve at least one explicitly detected τ)

ATLAS has performed measurements of m_{top} in all 3 channels

top quark mass in ATLAS - EPS HEP 18-24 July 2013

Measurement of m_{top} in the lepton+jets channel

- 2012 lepton+jets ATLAS paper using 1fb⁻¹ of data, based on the template method:
- fit m_{top} estimator in data to the sum of signal and background PDFs derived from simulation
- calibrate JES in-situ using m_w

Measurement of m_{top} in the lepton+jets channel

ISR/FSR: Reduced the parameter range used for estimating ISR/FSR systematics, improvement based on jet-veto analysis <u>Eur.Phys.J. C72 (2012) 2043</u>

JES: improved baseline uncertainty <u>ATLAS-CONF-2013-004</u> *bJES:* 40% reduction of the MC based bJES uncertainty <u>ATLAS-CONF-2013-002</u>

MC Generators: moved to Powheg+Pythia P2011C for default top quark MC, extensive study of generators and their tunes for top quark physics <u>ATL-PHYS-PUB-2013-005</u>

lepton+jets top pair reconstruction

Lepton+jets events are reconstructed using a Kinematical Likelihood Fitter (KLFitter):

- Choose the object topology that best fits the top quark pair decay hypothesis
- Reconstructed objects are mapped to the response of partons from the hard scattering via LO transfer functions (*T*)
- Apply Breit Wigner (\mathcal{B}) constraints (Γ_{top} and Γ_{W}) for m_{top}^{reco} and m_{W}^{reco} (for both had/lep sides), constraining m_{W}^{reco} to m_{W}^{PDG}
- Reduce combinatorics by introducing b-tag information in the likelihood ($W_{_{btag}}$)

$$L = \mathcal{T}\left(E_{jet_{1}}|\hat{E}_{b_{had}}\right) \cdot \mathcal{T}\left(E_{jet_{2}}|\hat{E}_{b_{\ell}}\right) \cdot \mathcal{T}\left(E_{jet_{3}}|\hat{E}_{q_{1}}\right) \cdot \mathcal{T}\left(E_$$

(correct assignment in >70% of the cases)

In L

Reconstructed top quark mass

 m_{ton}^{reco} signal PDFs from top-antitop MC, as a function of:

Reconstructed top quark mass

m_{top} signal PDFs from top-antitop MC, as a function of:

m_W^{reco} [GeV]

Reconstructed top quark mass

 m_{ton}^{reco} signal PDFs from top-antitop MC, as a function of:

3d template method (3d analysis)

 Extend the 2d analysis with a 3rd dimension to reduce the bJES uncertainty using data $P_{m_{top}^{reco}}(m_{top}, JSF, bJSF)$ $P_{m_{W}^{reco}}(JSF)$ $P_{R_{lb}^{reco}}(m_{top}, bJSF)$

 The 3rd variable is defined to be sensitive to the relative b-to-light jets energy scale (bJSF):

2 b-tag events:
$$R_{lb}^{reco} = \frac{p_T^{b-tag,1} + p_T^{b-tag,2}}{p_T^{light,1} + p_T^{light,2}}$$

1 b-tag events: $R_{lb}^{reco} = \frac{p_T^{b-tag}}{(p_T^{light,1} + p_T^{light,2})/2}$
light jets = jets assigned to the W boson decay by
the reconstruction algorithm

Events with = 1 or ≥ 2 b-tagged jets are treated separately: different sensitivity / resolution

top quark mass in ATLAS - EPS HEP 18-24 July 2013

1.5

2

2.5

R^{reco}

0.01

0.5

1

Estimator distributions

Distributions before any fit

events with ≥1 b-tags

The shape differences between data and predictions are what we use to measure m_{top} with an unbinned likelihood fit, using the template parameterizations as PDFs

Results on 2011 $\sqrt{s}=7$ TeV ATLAS data

	2d-analy	vsis	3d-a	3d-analysis	
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
<i>b</i> -tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022

The same analysis is performed also by switching off the 3rd dimension of the fit (bJSF fixed to unity), to highlight the improvements w.r.t. the 2d analysis

	2d-analy	vsis	3d-a	nalysis	
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
<i>b</i> -tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022

Statistical components:

the extra statistical uncertainties on m_{top} introduced by the simultaneous JSF (bJSF) fits

 \rightarrow the 3d analysis has a larger statistical component due to the increased dimensionality of the fit (extra 0.67 GeV)

...more than compensated by the reduced bJES uncertainty (thanks to the 3rd dimension)

Systematic uncertainties

	2d-analy	/sis	3d-analysis		
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
<i>b</i> -tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022

MC modelling:

dominant uncertainties are reduced due to the additional fit of the bJSF

Systematic uncertainties

	2d-analy	/sis	3d-analysis		
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
b-tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022

Residual JES uncertainty:

- despite the in-situ m_w calibration
- introduced by the p_T dependence of the JES uncertainty, not recoverable by a global JSF

b-tagging uncertainty:

 the 3d analysis has a larger sensitivity to b-tagging systematics, related to the p_T dependence of the SF uncertainties, affecting the shape of R_{lb}^{reco}

	2d-analy	vsis	3d-analysis		
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jet energy resolution	0.22	0.006	0.22	0.006	0.000
Jet reconstruction efficiency	0.03	0.000	0.05	0.000	0.000
b-tagging efficiency and mistag rate	0.17	0.001	0.81	0.001	0.011
Lepton energy scale	0.03	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	0.03	0.000	0.03	0.000	0.001
Total systematic uncertainty	2.02	0.021	1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022

Summary:

- 3d analysis has a reduced total uncertainty by 0.5 GeV
- The so far dominating bJES uncertainty has been absorbed by the bJSF and its statistical uncertainty, that will scale with luminosity

lepton+jets summary

More info: ATLAS-CONF-2013-046

The final measurement is:

 $m_{top} = 172.31 \pm 0.75 (stat + JSF + bJSF) \pm 1.35 (syst)$ GeV,

- JSF = 1.014 ± 0.003 (stat) ± 0.021 (syst),
- bJSF = 1.006 ± 0.008 (stat) ± 0.020 (syst).

Compared to ATLAS 1fb⁻¹ paper, uncertainty has been reduced from 2.4 GeV to 1.5 GeV (~40%), thanks to improvements in both the analysis and the MC modelling

Total uncertainty dominated by:

- residual JES
- b-tagging syst

AT	ATLAS Preliminary		
1 fb ⁻¹ l+jets (2d)	▶ ▶ ● 1 74.53 ± 0.61 ± 0.	43 ± 2.27	
4.7 fb ⁻¹ l+jets (3d) prel. ⊢⊢	lel → 172.31 ± 0.23 ± 0.2	27 ± 0.67 ± 1.35	
CMS 5.0 fb ⁻¹ I+jets	► IFI 173.49 ± 0.27 ± 0.	33 ± 0.98	
D0 3.6 fb ⁻¹ l+jets	► ► ► ► 174.94 ± 0.83 ± 0.	53 ± 1.12	
CDF 8.7 fb ⁻¹ l+jets	172.85 ± 0.52 ± 0.	49 ± 0.85	
Tevatron Comb. 2013	173.20 ± 0.51 ± 0.5 stat JS	36 ± 0.61 F bJSF syst	
	175 180	185	
100 170	m _{top} [GeV]	100	

New for EPS!

Measurement of m_{top} in the dilepton channel

- Select events with exactly 2 charged leptons (e, μ), E_T^{miss} and exactly 2 b-tagged jets
- Almost a background free sample! (background < 3%)

Use the template method with the m_{lb} observable as an estimator for m_{top} :

- average invariant mass of the charged lepton b-tagged jet systems
- b-tagged jet to lepton assignment by taking the pairing with minimum average $m_{\mbox{\tiny lh}}$

 \rightarrow correct assignment in ~77% of the cases

 m_{lb} signal PDF from top-antitop MC:

 m_{lb} in 4.7 fb⁻¹ of 2011 \sqrt{s} =7 TeV ATLAS data:

top quark mass in ATLAS - EPS HEP 18-24 July 2013

New for EPS!

Results on 2011 \sqrt{s} =7 TeV ATLAS data

Best fit to data

Systematic uncertainties

Description	Value [GeV]
Measured value	173.09
Statistical uncertainty	0.64
Method calibration	0.07
Signal MC generator	0.20
Hadronisation	0.44
Underlying event	0.42
Colour reconnection	0.29
ISR/FSR	0.37
Proton PDF	0.12
Background	0.14
Jet energy scale	0.89
<i>b</i> -jet energy scale	0.71
<i>b</i> -tagging efficiency and mistag rate	0.46
Jet energy resolution	0.21
Missing transverse momentum	0.05
Pile-up	0.01
Electron uncertainties	0.11
Muon uncertainties	0.05
Total systematic uncertainty	1.50
Total uncertainty	1.63

The final measurement is:

More info: <u>ATLAS-CONF-2013-077</u>

$$m_{\rm top} = 173.09 \pm 0.64 \, ({\rm stat}) \pm 1.50 \, ({\rm syst}) \, {\rm GeV}$$

Uncertainty reduced from 3.5 GeV to 1.6 GeV with respect to previous ATLAS result in the $e\mu$ channel

Precision better than 1%, competitive with m_{top} from the ATLAS lepton+jets 3d analysis

Measurement of m_{top} in the all-hadronic channel

At least 6 jets (p_T >55 GeV, 6th jet p_T >30 GeV), exactly 2 b-tagged jets

Veto events with prompt leptons, require low $E_{\rm T}^{\rm miss}$

More info: <u>ATLAS-CONF-2012-30</u>

 \rightarrow use the template method with m_{ijb} as estimator for m_{top}

Data driven QCD multijet background using an event/jet mixing algorithm

Systematic uncertainties dominated by JES, bJES, ISR/FSR, and background modelling

Jet to parton assignments using a χ^2 fit

This measurement does not yet take advantage of the latest ATLAS improvements in MC modelling, JES and bJES

300 Entries / 7.5 GeV **ATLAS** Preliminary $\sqrt{s} = 7$ TeV 2011 Data 250 $Ldt = 2.04 \text{ fb}^{-1}$ Fit for Data P_{sia} 200 Pbackground 150 100 50 160 180 200 220 240 260 280 300 m_{jjb} [GeV] $m_t = 174.9 \pm 2.1 \text{ (stat.)} \pm 3.8 \text{ (syst.)} \text{ GeV}$

Result on 2.04 fb⁻¹ of 2011 $\sqrt{s}=7$ TeV ATLAS data

Conclusion

- Individual m_{top} measurements at ATLAS have reached a precision better than 1%, thanks to:
 - improvements in the analysis methods
 - better understanding of the detector performance and MC simulation
- Expect improved precision in the next LHC combination (competitive with Tevatron)

http://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Uncertainty Categories ATLAS / Tevatron ATLAS CMS 2011	CMS
Tevatron ATLAS CMS 2011	
	2011
<i>l</i> +jets	<i>l</i> +jets
Measured m _{top} 172.31	173.49
Jet Scale Factor Jet Scale Factor 0.27	0.33
bJet Scale Factor 0.67	
iJES Sum Sum 0.72	0.33
bJES JES _{b-jet} JES _{b-jet} 0.08	0.61
dJES JES _{light-jet} JES _{light-jet} 0.79	0.28
Lepton $p_{\rm T}$ Scale 0.04	0.02
MC MC Generator MC Generator 0.19	
Hadronisation 0.27	
Sum Sum 0.33	
Rad ISR/FSR ISR/FSR 0.45	
Q-Scale	0.24
Jet-Parton Scale	0.18
Sum Sum 0.45	0.30
CR Colour Recon. 0.32	0.54
PDF Proton PDF Proton PDF 0.17	0.07
Jet Energy Res. Jet Energy Res. 0.22	0.23
Jet Rec. Eff. 0.05	
b-tagging b-tagging 0.81	0.12
$E_{\mathrm{T}}^{\mathrm{miss}}$ $E_{\mathrm{T}}^{\mathrm{miss}}$ 0.03	0.06
DetMod Sum Sum 0.84	0.27
Underlying Event 0.12	0.15
BGMC	0.13
BGData 0.10	
Method Method Calib. Method Calib. 0.13	0.06
MHI Pile-up Pile-up 0.03	0.07
Statistics 0.23	0.27
Rest 1.53	1.03
Total Uncertainty 1.55	1.07

top quark mass in ATLAS - EPS HEP 18-24 July 2013

Summary table of public 2011 LHC m_{top} measurements in the lepton+jets channel, likely to drive the next LHC combination

Systematics categorized according to the first LHC combination CMS measurement from: JHEP (2012) 2012:105

	Uncertainty Categ	ories		/ CMS	
Transform		CN	2011		1
Tevatron	AILAS	CMS	2011	2011	
			<i>l</i> +jets	<i>l</i> +jets	
	Measured m _{to}	p	172.31	173.49	
	Jet Scale Factor	Jet Scale Factor	0.27	0.33	_
	bJet Scale Factor	~	0.67	6.00	
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES _{b-jet}	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	
	Lepton $p_{\rm T}$ Sca	le	0.04	0.02	
MC	MC Generator	MC Generator	0.19		
	Hadronisation		0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR	0.45		
		Q-Scale		0.24	
		Jet-Parton Scale		0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
	Jet Energy Res.	Jet Energy Res.	0.22	0.23	
	Jet Rec. Eff.		0.05		
	b-tagging	<i>b</i> -tagging	0.81	0.12	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{ ext{T}}^{ ext{miss}}$	0.03	0.06	
DetMod	Sum	Sum	0.84	0.27	
	Underlying Eve	ent	0.12	0.15	
	BGMC			0.13	
	BGData		0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
		Statistics	0.23	0.27	
		Rest	1.53	1.03	
		Total Uncertainty	1.55	1.07	

Statistical sensitivity

- extra statistical uncertainties on m_{top}
- introduced by the simultaneous JSF/bJSF fits
- Scale with luminosity, uncorrelated between experiments
- Similar sensitivity to JSF from the insitu m_w fits (0.27 vs 0.33 GeV)
- ATLAS has larger JES stat component (iJES) due to the increased dimensionality of the fit (extra 0.67 GeV)

Similar statistical sensitivity to m_{top} (corresponds to a 1d fit)

top quark mass in ATLAS - EPS HEP 18-24 July 2013

	Uncertainty Categ	gories	ATLAS	/ CMS
Tevatron	ATLAS	CMS	2011	2011
			<i>l</i> +jets	l+jets
	Measured mto	p	172.31	173.49
	Jet Scale Factor	Jet Scale Factor	0.27	0.33
	bJet Scale Factor		0.67	
iJES	Sum	Sum	0.72	0.33
bJES	JES b-jet	JES _{b-jet}	0.08	0.61
dJES	JES light-jet	JES _{light-jet}	0.79	0.28
	Lepton $p_{\rm T}$ Sca	le	0.04	0.02
MC	MC Generator	MC Generator	0.19	
	Hadronisation		0.27	
	Sum	Sum	0.33	
Rad	ISR/FSR	ISR/FSR	0.45	
		Q-Scale		0.24
		Jet-Parton Scale		0.18
	Sum	Sum	0.45	0.30
CR	Colour Recon.		0.32	0.54
PDF	Proton PDF	Proton PDF	0.17	0.07
	Jet Energy Res.	Jet Energy Res.	0.22	0.23
	Jet Rec. Eff.		0.05	
	<i>b</i> -tagging	<i>b</i> -tagging	0.81	0.12
	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	0.03	0.06
DetMod	Sum	Sum	0.84	0.27
	Underlying Eve	ent	0.12	0.15
	BGMC			0.13
	BGData		0.10	
Method	Method Calib.	Method Calib.	0.13	0.06
MHI	Pile-up	Pile-up	0.03	0.07
		Statistics	0.23	0.27
		Rest	1.53	1.03
		Total Uncertainty	1.55	1.07

top quark mass in ATLAS - EPS HEP 18-24 July 2013

Reduced bJES uncertainty thanks to 3rd dimension in the fit

	Uncertainty Categ	ories	ATLAS	/ CMS	
Tevatron	ATLAS	CMS	2011	2011	
			<i>l</i> +jets	l+jets	
	Measured m _{to}	D	172.31	173.49	
	Jet Scale Factor	Jet Scale Factor	0.27	0.33	
	bJet Scale Factor		0.67		
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES _{b-jet}	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	
	Lepton $p_{\rm T}$ Sca	le	0.04	0.02	
MC	MC Generator	MC Generator	0.19		
	Hadronisation		0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR	0.45		1
		Q-Scale		0.24	
		Jet-Parton Scale		0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
	Jet Energy Res.	Jet Energy Res.	0.22	0.23	
	Jet Rec. Eff.		0.05		
	<i>b</i> -tagging	<i>b</i> -tagging	0.81	0.12	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{ m T}^{ m miss}$	0.03	0.06	
DetMod	Sum	Sum	0.84	0.27	
	Underlying Eve	ent	0.12	0.15	
	BGMC			0.13	
	BGData		0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
		Statistics	0.23	0.27	
		Rest	1.53	1.03	
		Total Uncertainty	1.55	1.07	

Different residual JES uncertainties, despite the in-situ m_w calibration More pronounced p_T dependence of the JES uncertainty for ATLAS, softer jet p_T requirements

	Uncertainty Categ	gories	ATLAS	/ CMS	
Tevatron	ATLAS	CMS	2011	2011	
			l+jets	<i>l</i> +jets	
	Measured mto	p	172.31	173.49	
	Jet Scale Factor	Jet Scale Factor	0.27	0.33	
	bJet Scale Factor		0.67		
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES _{b-jet}	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	/
	Lepton $p_{\rm T}$ Sca	le	0.04	0.02	
MC	MC Generator	MC Generator	0.19		1
	Hadronisation		0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR	0.45		
		Q-Scale		0.24	
		Jet-Parton Scale		0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
	Jet Energy Res.	Jet Energy Res.	0.22	0.23	
	Jet Rec. Eff.		0.05		
	<i>b</i> -tagging	<i>b</i> -tagging	0.81	0.12	
	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	0.03	0.06	
DetMod	Sum	Sum	0.84	0.27	
	Underlying Eve	ent	0.12	0.15	
	BGMC			0.13	
BGData			0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
		Statistics	0.23	0.27	
		Rest	1.53	1.03	
		1.55	1.07		

top quark mass in ATLAS - EPS HEP 18-24 July 2013

MC generator and hadronization (Pythia/Herwig) uncertainties:

Not dominant uncertainties for ATLAS 3d analysis but could be large depending on the analysis

Within CMS:

- the MC generator systematics are found to be small (but are not documented for all the current public results)
- Hadronization systematics are meant to be covered by the JES uncertainty

Harmonized treatment is under discussion in the TOP-LHC-WG for the next LHC combination

Need to evaluate possible double counting effects between the hadronization and JES systematics

					-
Uncertainty Categories			ATLAS / CMS		
Tevatron	ATLAS	CMS	2011	2011]
			<i>l</i> +jets	l+jets	
Measured <i>m</i> top			172.31	173.49	
	Jet Scale Factor	Jet Scale Factor	0.27	0.33	
	bJet Scale Factor		0.67		
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES _{b-jet}	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	
Lepton $p_{\rm T}$ Scale			0.04	0.02	
MC	MC Generator	MC Generator	0.19		
	Hadronisation		0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR	0.45		
		Q-Scale		0.24	
		Jet-Parton Scale		0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
	Jet Energy Res.	Jet Energy Res.	0.22	0.23	
	Jet Rec. Eff.		0.05		
	<i>b</i> -tagging	<i>b</i> -tagging	0.81	0.12	
	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	0.03	0.06	-
DetMod	Sum	Sum	0.84	0.27	
Underlying Event			0.12	0.15	
BGMC				0.13	
BGData			0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
Statistics			0.23	0.27	İ
Rest			1.53	1.03	
Total Uncertainty			1.55	1.07	
		•			4

top quark mass in ATLAS - EPS HEP 18-24 July 2013

ATLAS 3d analysis has a larger sensitivity to b-tag systematics, mainly due to p_T dependence of the b-tagging SF uncertainties, that affect the shape of R_{lb}^{reco}

Correlation of the three observables

Results of the fits for 1b-tag / ≥ 2b-tags / combined show very good consistency

Contour plots m_{top} vs JSF/bJSF and JSF vs bJSF

JSF and bJSF (almost) uncorrelated

(statistical uncertainties only)

31

Standard top-pair selection for the I+jets channel:

- Exactly one charged lepton, matching trigger and within good detector acceptance, with $E_T \ge 25$ ($p_T \ge 20$) GeV for electrons (muons)
- \geq 4 anti-kt4 EM+JES jets with $p_{\tau} \geq$ 25 GeV, $|\eta| <$ 2.5, $|JVF| \geq$ 0.75
- ≥ 1 b-tag jet (MV1 @ 70% efficiency)
- To suppress backgrounds:
 - e+jets: $E_T^{miss} \ge 30 \text{ GeV}, m_W^T \ge 30 \text{ GeV}$
 - μ +jets: $E_T^{miss} \ge 20 \text{ GeV}, E_T^{miss} + m_W^T \ge 60 \text{ GeV}$

MC samples are corrected by applying scale factors (SF) to match data. The b-tagging SF is derived from dijet and dilepton top pair decay events to have a reduced p_{τ} dependence of its uncertainty.

lepton+jets: event selection

uncertainty band includes: statistical uncertainty, luminositi, b-tagging uncertainties,

10% uncertainty on top antitop cross section, 30% on W+jets normalization, 50% on QCD normalization

top quark mass in ATLAS - EPS HEP 18-24 July 2013

Perform an unbinned likelihood fit using the following function:

$$\mathcal{L}_{\text{shape}}(m_{\text{top}}^{\text{reco}}, m_{\text{W}}^{\text{reco}}, R_{\text{lb}}^{\text{reco}} | m_{\text{top}}, \text{JSF}, \text{bJSF}, n_{\text{bkg}}) = \prod_{i=1}^{N} P_{\text{top}}(m_{\text{top}}^{\text{reco}} | m_{\text{top}}, \text{JSF}, \text{bJSF}, n_{\text{bkg}})_{i} \times P_{\text{W}}(m_{\text{W}}^{\text{reco}} | \text{JSF}, n_{\text{bkg}})_{i} \times P_{\mathcal{R}_{\text{lb}}}(R_{\text{lb}}^{\text{reco}} | m_{\text{top}}, \text{bJSF}, n_{\text{bkg}})_{i} \times P_{\mathcal{R}_{\text{lb}}}(R_{\text{lb}}^{\text{reco}} | m_{\text{top}}, \text{bJSF}, n_{\text{bkg}})_{i}$$

Performance of the fitting procedure has been verified using pseudo-experiments:

- pull (mean, width) = (0,1)
- the residual deviations from this are used to estimate the method calibration uncertainty

lepton+jets: template parameterization 1/2

Parameterize the probability density functions of the reconstructed observables:

• m_{top}^{reco} as function of m_{top}^{reco} , JSFⁱⁿ and bJSFⁱⁿ

Fit parameters depend linearly on m_{top} , JSFⁱⁿ and bJSFⁱⁿ Parameterization done separately for signal/background and 1 b-tag/ ≥2b-tags samples single top considered in signal, background m_{top} independent

events with 1 b-tag

lepton+jets: template parameterization 2/2

Parameterize the probability density functions of the reconstructed observables:

- m_{top}^{reco} as function of m_{top}^{reco} , JSFⁱⁿ and bJSFⁱⁿ
- m_w^{reco} as function of JSFⁱⁿ
- R_{lb}^{reco} as function of bJSFⁱⁿ and m_{top}

Fit parameters depend linearly on m_{top} , JSFⁱⁿ and bJSFⁱⁿ Parameterization done separately for signal/background and 1 b-tag/ ≥2b-tags samples single top considered in signal, background m_{top} independent

events with 1 b-tag

Standard top-pair selection in the dileptonic channel:

- Two oppositely charged isolated leptons within good detector acceptance, with E_T ≥ 25 (p_T ≥ 20) GeV for electrons (muons)
- \geq 2 anti-kt4 EM+JES jets with $p_{\tau} \geq$ 25 GeV, $|\eta| <$ 2.5, $|JVF| \geq$ 0.75
- Exactly 2 b-tagged jets (MV1 @ 70% efficiency)
- To suppress backgrounds:
 - e⁺e⁻, μ⁺μ⁻:
 - $E_T^{miss} \ge 60 \text{ GeV},$
 - Z boson mass window exclusion: m_{e+e-} , $m_{u+u-} \neq 91 \pm 10 \text{ GeV}$
 - eµ:
 - H_T≥ 130 GeV
- All reco-object scale factors are applied
- di-jet based b-tagging scale factors are used

Almost a background free sample. Background < 3%