The new Higgs particle in the $H \rightarrow ZZ^* \rightarrow 4I$ searches with the ATLAS detector

EPS HEP 2013 - Stockholm, 18-24 July 2013

Abstract

This poster presents results and measurements of the properties of the newly observed Higgs particle in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow l^+ l^- l'^+ l'^-$, where l, l' = e or μ . The analysis is based on 4.6 fb⁻¹ and 20.7 fb⁻¹ of proton-proton collisions at 7 TeV and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. An excess of events over background is observed at $m_H = 124.3$ GeV with a significance of 6.6 standard deviations. The mass is measured to be $m_H = 124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (syst) GeV and the signal strength at this mass is found to be $\mu = 1.7^{+0.5}_{-0.4}$. A spin-parity analysis is also performed: the Higgs-like boson is found to be compatible with the Standard Model (SM) expectation of 0⁺, when compared pair-wise with 0^- , 1^+ , 1^- , 2^+ and 2^- [1].

Event Selection

- $p_{T_{1,2,3,4}} > 20, 15, 10, 7/6 \text{ (e/}\mu\text{) GeV}$
- $50 < m_{12} < 106 \text{ GeV}$
- $(115 > m_{34} > 12 \text{ to } 50 \text{ GeV} (depending on <math>m_{4l})$

Background Estimate

Irreducible Background

The irreducible ZZ^{*} background is estimated using MC simulation nomalised to the theoretical cross section. It constitutes 70% of the whole background and the rejection is done through kinematic cuts, e.g. m_{34} . Data and Monte Carlo are compared in different regions of m_{4l} .

resolution improved (12-19%): applied FSR correction and on-shell Z mass constraint

Signal properties:

- $\Rightarrow \sigma \times BR \sim 2.5 \text{ fb} (@ m_H = 125 \text{ GeV})$
- \clubsuit high purity (S/B~1.6 @ $m_H = 125$ GeV)
- narrow peak: width around 2 GeV at 125 GeV (dominated by experimental resolution)

Reducible Background

Composed of Zbb, Z+jets and $t\bar{t}$ and estimated from 'background-enriched' control regions in data:

- No isolation requirements on the subleading pair
- $ll + \mu\mu$: leptons fails the impact parameter significance requirement (to enhance the Zbb and $t\bar{t}$ contribution)
- ll + ee: fake, conversions, heavy q decays; relaxed electron identification (to enhance the Z+jet contribution)

Expected and observed events

Window of E Coll around 10E Coll	signal	ZZ*	$Z+jets+t\overline{t}$	data		
window of 5 Gev dround 125 Gev	15.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	32		

-ocal

Mass Measurement

4-lepton invariant mass for the selected candidates compared to the background expectation signal expectation for the $m_H = 125$ GeV hypothesis is also shown.

Signal strength

Maximum deviation from background-only Local p0-value: 2.7×10^{-11} or 6.6 σ expectation observed for $m_H = 124.3$ GeV: **Expected** from SM Higgs: \sim 4.4 σ

_	ΡT	I	I	Ι	Т	Т	Т	Т	I	I	I	I	I	I	I	I	I	Ι	T	Ι	Τ	I	I	I	Т	Т

The measured mass is $m_H = 124.3^{+0.6}_{-0.5}$ (stat) $^{+0.5}_{-0.3}$ (syst) GeV

Spin-Parity Measurement

Spin and parity can be measured using:

- \blacklozenge m_{12} and m_{34}
- $\theta_1, \theta_2 \rightarrow \text{decay angles of negative leptons}$
- $\phi \rightarrow$ angle between the Z_1 and Z_2 decay planes
- $\phi_1 \to Z_1$ decay plane angle
- $\theta^* \to Z_1$ production angle

Event categorization

Categories are exclusive!

VBF-like: selection cuts + $N_{jet} \ge 2$, $|\eta_{j_1} - \eta_{j_2}| > 2$ and $m_{j_1, j_2} > 350 \text{ GeV}$

VH-like: selection cuts + additional lepton $p_T > 8$ GeV ggf-like: selection cuts

∼ - 2∎		In m_{4l} 115-130 GeV
⊈ யூ 1.8	ATLAS Preliminary	1 VBF candidate
[,] ± [∞] 1.6	$H \rightarrow ZZ^{(\prime)} \rightarrow 4I$	@ 123 5 GeV
≥ ≝ 1.4	$\sqrt{s} = 7 \text{ IeV} \cdot \int \text{Ldt} = 4.6 \text{ fb}^{-1}$	
	10 = 0.1011 J Lot = 20.7 Hz	SM Higgs boson

VBF candidate @ 123.5 GeV SM Higgs boson

Two Multivariate techniques:

• Boosted Decision Tree (**BDT**) • Matrix-Element Likelihood-Analysis (JP-MELA)

The observed CL_s exclusion confidence levels for 0^- , 1^+ , 1^- and 2_m^+ hypotheses are 97.8% (99.6%), 99.8% (99.4%), 94.4% (96.4%), and 83.2% (81.8%), respectively, in favour of 0^+ for the BDT (JP-MELA).

Standard Model (0^+) hypothesis favoured!

Conclusions

- The **observation** of the Higgs particle is **fully confirmed** [2]
- **Single channel discovery** \rightarrow 6.6 standard deviations
- **Preference for Standard Model (0+) hypothesis** [3]

References

[1] Measurements of the properties of the Higgs-like boson in the four leptons decay channel with the ATLAS detector using 25 fb $^{-1}$ of proton-proton collision data (ATLAS-CONF-2013-013)

[2] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC (Phys. Lett. B 716 (2012) 1-29).

[3] Evidence for the spin-0 nature of the Higgs boson using ATLAS data (arXiv:1307.1432 [hep-ex])

[4] Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC (arXiv:1307.1427 [hep-ex]).

Antonio Salvucci, on behalf of the ATLAS Collaboration - contact: a.salvucci@science.ru.nl

