The 2013 European Physical Society Conference on High Energy Physics – Stockholm, Sweden, 18-24 July, 2013

Definition and performance of muon physics object at CMS

Daniele Trocino (Northeastern University, USA) on behalf of the CMS Collaboration

The Compact Muon Solenoid is designed for muon detection on a large momentum range, from few GeV up to the TeV scale

high identification efficiency

good momentum and mass resolution

fast and efficient trigger

Muon identification

- Soft muons Tracker track matched to segments in the DT or CSC chambers Requirements on number of hits, track χ^2 , impact parameters Mainly used for low- p_{τ} muons (e.g. B-physics)
- Combined fit of tracker and muon system hits and segments • Tight muons Requirements on hit and segment number, track χ^2 , impact parameters Efficient for medium/high- p_{τ} prompt muons (e.g. W, Z), reject decays-in-flight
- Isolation Sum of all particle candidates in a cone $(\Delta \phi^2 + \Delta \eta^2)^{\frac{1}{2}} < 0.4$:

(Σ charged hadrons + Σ neutral hadrons + Σ photons) / p_{T}^{μ}

- Charged hadrons are constrained to the primary interaction vertex (PV)
- Neutral components are corrected using the charged hadrons from non-primary vertices inside the isolation cone, and the neutral-to-charged ratio

ψ 1.2_□ Efficiency measured with efficiency Tight muons efficier the tag-and-probe technique 1.1 using J/ψ and Z resonances muon uonu 0.6 Soft muons Tight muons • tag strictly-identified muon 0.9 **.** 0.6 - 🚖 which triggered the event ight 0.8

Misidentification rate of charged hadrons faking muons measured using $\phi \to \pi\pi$, $\Lambda \to p\pi$, $K_s \to \phi \phi$ decays with a hadron track identified as a muon

Muon triggers are composed of two main stages

- Level-1 (L1): hardware based, muon detectors only
- **High Level Trigger (HLT):** software based, using also tracker and calorimeters

Muon triggers can require one or more candidates, with possible additional selections: isolation, track quality requirements, dimuon mass, vertex, etc.

Mu40: trigger path requiring a single muon with $p_{\tau} > 40$ GeV/c and track quality cuts

Data-MC discrepancies due to the constant evolution of triggers used during data-taking, in order to cope with changing LHC conditions, especially the increasing pile-up

Differences are corrected with proper scale factors

Muon p₊ [GeV/c]

Muon momentum scale sensitive to detector alignment, material, magnetic field description

- for muon p_{τ} < 100 GeV/c, scale calibrated using J/ ψ and Z resonances \rightarrow all biases removed (< 0.2%)
- same procedure used to measure the momentum resolution: 1-2% barrel, ~ 6% endcaps

• for higher p_{τ} , the resolution is measured with cosmic-ray muons (barrel only): < 6% up to 1 TeV

References

CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV", **JINST 7** (2012) P10002 [arXiv:1206.4071]

Other CMS results with muons:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO

