Extraction of γ from three-body B decays

Maxime Imbeault Cégep de Saint-Laurent

July 18, 2013

EPS 2013, Stockholm

Based on arXiv:1303.0846: work done in collaboration with B. Bhattacharya and D. London.

- Extracting weak phases
- A procedure for extracting γ
- Application to $B \to K K \bar{K}$ and $B \to K \pi \pi$
- Caveats
- Conclusions

Extracting weak phases

State of the art:

Direct measurements (world averages from CKMfitter):

- $\alpha = (88.7^{+4.6}_{-4.3})^{\circ}$
- $\beta = (21.38^{+0.79}_{-0.77})^{\circ}$

• $\gamma = (66 \pm 12)^{\circ}$ (Latest result from Belle (1301.2033) : $(68^{+15}_{-14})^{\circ}$)

Extracting weak phases

An ideal situation (E.g., β from $B_d \rightarrow J/\psi K_s$):

- The final state is a CP eigenstate
- The amplitude contains a single contribution (E.g., pure penguin or pure tree)
- The indirect CP asymmetry measures the weak phase

Three-body B decays

- In general, the final state is NOT a CP eigenstate (E.g., $K_s\pi^+\pi^-$)
- The amplitude contains several different contributions
- Electroweak penguin (EWP) pollution
- The amplitude is momentum dependent (Dalitz plots)

How to overcome these problems?

In general, the final state is NOT a CP eigenstate

Solution: Construction of a CP eigenstate by symmetrizing the amplitude

The amplitude contains several different contributions

Solution: Combination of several decays parametrized in the same framework

There is the same problem for some two-body B decays. E.g., extracting α from $B_d \to \pi^0 \pi^0$, $B_d \to \pi^+ \pi^-$ and $B^\pm \to \pi^\pm \pi^0$

Electroweak penguin (EWP) pollution

Solution: SU(3) relations between trees and EWP's (requires a fully symmetric final state for three-body decays)

The amplitude is momentum dependent

Solution: Extract γ independently for all points of the Dalitz plot

Step 1 : Construction of the fully symmetric amplitude

Isobar model:

For a decay $B \to M_1 M_2 M_3$:

The amplitude (A) is expressed in terms of isobar parameters (c_j and θ_j):

$$\mathcal{A}(s_{12}, s_{13}) = \mathcal{N} \sum_{i} c_{j} e^{i\theta_{j}} F_{j}(s_{12}, s_{13})$$

• Momentum dependence (invariant masses $s_{ij} = (p_i + p_j)^2$)

• Isobar coefficients $(c_j e^{i\theta_j})$ are obtained by fitting the data of the Dalitz plot Fully symmetric amplitude:

$$\mathcal{A}_{\rm fs}(s_{12}, s_{13}) = \frac{1}{\sqrt{6}} \left(\mathcal{A}(s_{12}, s_{13}) + \mathcal{A}(s_{13}, s_{12}) + \mathcal{A}(s_{12}, s_{23}) \right. \\ \left. + \mathcal{A}(s_{23}, s_{12}) + \mathcal{A}(s_{13}, s_{23}) + \mathcal{A}(s_{23}, s_{13}) \right)$$

(N. Rey-Le Lorier and D. London, Phys. Rev. D85, 016010 (2012).)

Step 2 : Construction of the fully symmetric observables

The momentum dependent observables are constructed from the fully symmetric amplitude

• CP averaged branching fraction

$$X(s_{12}, s_{13}) = |\mathcal{A}_{\rm fs}(s_{12}, s_{13})|^2 + |\bar{\mathcal{A}}_{\rm fs}(s_{12}, s_{13})|^2$$

• Direct CP asymmetry

$$Y(s_{12}, s_{13}) = |\mathcal{A}_{\rm fs}(s_{12}, s_{13})|^2 - |\bar{\mathcal{A}}_{\rm fs}(s_{12}, s_{13})|^2$$

• Indirect CP asymmetry

$$Z(s_{12}, s_{13}) = \operatorname{Im} \left(\mathcal{A}_{\mathrm{fs}}^*(s_{12}, s_{13}) \bar{\mathcal{A}}_{\mathrm{fs}}(s_{12}, s_{13}) \right)$$

A procedure for extracting γ

Step 3 : Parametrizing three-body B decays

Diagrammatic parametrization:

Same as in two-body B decays, but

- "pop" an extra quark pair
- Diagrams are momentum dependent
- All permutations of the final states must be considered (symmetrization)

Several topologies : T'_1 , T'_2 , C'_1 , C'_2 , P'_{EW1} , P'_{EW2} , etc.

(N. Rey-Le Lorier, M. Imbeault and D. London, Phys. Rev. D84, 034040 (2011).)

Step 4 : Removing the EWP pollution

Generalization of two-body B decays relations between trees and EWP's:

$$P'_{EWi} = \kappa T'_i$$
$$P'^C_{EWi} = \kappa C'_i$$

with

$$\kappa = -\frac{3}{2} \frac{|\lambda_t^{(s)}|}{|\lambda_u^{(s)}|} \frac{c_9 + c_{10}}{c_1 + c_2}$$

- The c_i 's are Wilson coefficients of the effective hamiltonian
- Assume flavor-SU(3) symmetry
- Hold only for fully symmetric amplitudes

(M. Imbeault, N. Rey-Le Lorier and D. London, Phys. Rev. D84, 034041 (2011).)

Maxime Imbeault (CSL)

A procedure for extracting γ

Step 5 : Fit for γ

For a given value of s_{12} and s_{13} :

of observables (X's, Y's and Z's) $\geq (|T'_1|, |T'_2|, \dots, \text{ relative} \text{ strong phases and } \gamma)$

> The weak phase γ is extracted for any given value of s_{12} and s_{13} \rightarrow Several values of γ

All extracted values of γ are averaged

Maxime Imbeault (CSL)

Extraction of γ from three-body B decays

Application to $B \to K K \bar{K}$ and $B \to K \pi \pi$

We have used results from BaBar: (B. Bhattacharya, M. Imbeault and D. London, arXiv:1303.0846.)

Mode	Observables	Reference	Note
$B^0 \to K^+ \pi^0 \pi^-$	X, Y	PRD 83 , 112010 (2011)	
$B^0 \to K^0 \pi^+ \pi^-$	X, Y, Z	PRD 80, 112001 (2009)	
$B^+ \to K^+ \pi^+ \pi^-$	X, Y	PRD 78, 012004 (2008)	To probe flavor-SU(3) breaking
$B^0 \to K^+ K^0 K^-$	X, Y, Z	PRD 85, 112010 (2012)	
$B^0 \to K^0 K^0 \bar{K}^0$	X, Y , Z	PRD 80, 054023 (2012)	$\mathcal{A}=ar{\mathcal{A}}$ was assumed ($ P_{uc}' =0$)

Parametrization:

Four effective diagrams:

$$a \equiv -\tilde{P}'_{tc} + \kappa \left(\frac{2}{3}T'_1 + \frac{1}{3}C'_1 + \frac{1}{3}C'_2\right)$$

$$b \equiv T'_1 + C'_2 \qquad c \equiv T'_2 + C'_1 \qquad d \equiv T'_1 + C'_1$$

Application to $B \to K K \bar{K}$ and $B \to K \pi \pi$

- γ is extracted for 50 points of the Dalitz plot
- Points are chosen in 1/6 of the Dalitz plot to avoid double counting due to symmetrization
- Three fits:
 - $|\alpha_{SU(3)}| = 1,$ $B^+ \rightarrow K^+ \pi^+ \pi^- \text{ is excluded}$ (9 obs., 8 param.)
 - 2 $|\alpha_{SU(3)}|$ is fixed by comparing $B^+ \to K^+ \pi^+ \pi^-$ and $B^0 \to K^+ K^0 K^-$ (9 obs., 8 param.)
 - (a) $|\alpha_{SU(3)}|$ is a free parameter (11 obs., 9 param.)

Application to $B \to K K \bar{K}$ and $B \to K \pi \pi$

Combined $-2\Delta \log \mathcal{L}$ of all 50 points: [Updated]

- Four favored solutions : $(31^{+2}_{-1})^{\circ}$, $(77 \pm 2)^{\circ}$, $(261^{+2}_{-3})^{\circ}$, $(314 \pm 2)^{\circ}$ (statistical only)
- $\bullet\,$ Only one solution, $(77\pm2)^\circ,$ is consistent with established measurements
- Very small error bars

- Flavor-SU(3) breaking due to mismatched kinematical boundaries and resonnances:
 - $|\alpha_{SU(3)}|$ has little effect on fit results
 - Average values of $|\alpha_{SU(3)}|$ are very close to 1
 - * Extracted from $|\mathcal{A}|$'s : 0.97 ± 0.04 (stat.)
 - * Extracted from $|\bar{\mathcal{A}}|$'s : 0.99 ± 0.04 (stat.)
 - No perfect handle of flavor-SU(3) breaking, but all clues indicate a small effect
- We do not work directly from data \Rightarrow some limitations:
 - Systematic uncertainties are not quoted for isobar parameters
 - Correlations between observables at different points of the Dalitz plot can enlarge statistical error bars (lack of computing power)
 - The currect analysis is model dependent (isobar model)
 - ▶ 50 points is *ad hoc* \Rightarrow optimal binning
- Discrete ambiguities cannot be resolved without an outside input

Conclusions

Summary:

- The weak phase γ can be extracted from three-body B decays
- Estimations of γ obtained with the limitations of current available experiment values produce VERY small uncertainties
- The flavor-SU(3) breaking is cooperative
- Some caveats can be resolved with a more rigorous analysis performed directly on experimental data
- Is it the beginning of the story?
 - Can we also exploit the other S3 states (non-fully-symmetric)?
 - Would it resolve discrete ambiguities?
 - Are there other applications with multi-body B decays?

Thank you!