Normalized Multijet Cross Sections using Regularized Unfolding and Extraction of α_s(M_z) in Deep-inelastic Scattering at high Q² at HERA

> Daniel Britzger on behalf of the H1 collaboration

EPSHEP 2013 Stockholm, Sweden, 18 July 2013

Jet production in ep scattering

H1 detector at HERA

HERA ep collider

HERA collider in Hamburg, Germany

- e[±]p collider
- √s = 319 GeV
 - E_e = 27.6 GeV
 - E_p = 920 GeV

HERA-2 period Years 2003 – 2007 Electron and positron runs $\mathcal{L} \simeq 356 \text{ pb}^{-1}$

Normalized multijet measurement at H1

Four measurements are performed

Neutral current phase space $150 < Q^2 < 15000 \text{ GeV}^2$ 0.2 < y < 0.7

Jet acceptance

 $-1.0 < \eta_{lab} < 2.5$

Inclusive Jet $7 < p_{T}^{jet} < 50 \text{ GeV}$

NC DIS measurement used for normalized jet cross sections

<mark>Dijet (n_{jet} ≥2)</mark>	Trijet (n _{jet} ≥3)	Measurements are performed
$5 < p_T^{jet} < 50 \; \mathrm{GeV}$		double-differentially
$M_{ m 12}$ > 16 GeV		
$7 < \langle p_{\rm T} angle_2 < 50~{ m GeV}$	$7 < \langle p_{\rm T} angle_{ m 3} < 30~{ m GeV}$	$\langle p_{\rm T} \rangle_2 = (p_{\rm T}^{\rm jet1} + p_{\rm T}^{\rm jet2})/2$

Correction of detector effects using regularized unfolding

Detector effects

- Acceptance and efficiency
- Migrations due to limited resolution

Aim

- Cross section on hadron level
- Direct matrix inversion of A often not possible

Detector response

$$y = A \cdot x$$

- Measured vector y
- Hadron level vector x
- Detector response matrix A
- Covariance matrix V_y

Regularized unfolding using Tunfold (JINST 7 (2012) T10003)

• Find hadron level x by analytic minimization of χ^2

$$\chi^2(x,\tau) = (y - Ax)^T V_y^{-1}(y - Ax) + \tau^2 (x - x_0)^T (L^T L)(x - x_0)$$

Regularization: χ^2_L

- Find stationary point ($\partial \chi^2 / \partial x = 0$) by solving analytically as function of x
- 'True' hadron level can be determined directly

$$x = (A^T V_y^{-1} A + \tau^2 L^2)^{-1} A^T V_y^{-1} y =: By$$

Matrix inversion: χ^2_A

• τ (and L) are free parameters

Schematic definition of migration matrix

Simultaneous unfolding

NC DIS, inclusive jet, dijet and trijet

Covariance matrix V_y

takes statistical correlations of observables into account

Individual unfolding schemes

- E, J₁, J₂, J₃ studied in detail
- Are optimized separately using MC

Matrices **B**_i

Constrain reconstructed but not generated contributions

Two MC generators

Django and Rapgap

Phase space is enlarged

in all variables where migrations are relevant

Four measurements are unfolded simultaneously: stat. correlations are considered

Migration Matrix

Daniel Britzger

Correlation matrix of all data points

Covariance matrix

Obtained through linear error propagation of statistical uncertainties

Correlations

- Resulting from unfolding
- Physical correlations
 - Between measurements
 - Within inclusive jet

Useful for

- Cross section ratios
- Combined fits
- Normalized cross sections

Correlation matrix is employed for correct error propagation for norm. cross sections

Normalized multijet cross sections

⁸

Data are employed for extraction of $\alpha_{s}(M_{z})$

Experimental input m_i

Normalized incl. jet, dijet and trijet data

Experimental uncertainties $\delta_k m_i$

- Taken into account in fit
- Covariance matrix V takes correlations into account
- Experimental uncertainties k are respected with nuisance parameters

Theoretical input t_i

- NLO predictions from
 - NLOJET++ and fastNLO
 - QCDNUM
- Hadronization corrections
- PDF: CT10
- Scale choices
 - $\mu_r^2 = (Q^2 + E_T^2)/2$
 - $\mu_{f}^{2} = Q^{2}$
- FastNLO provides fast repeated calculation of cross section predictions

Iterative χ^2 minimization using TMinuit with $\alpha_s(M_z)$ and ε_k are free parameters

$$\chi^2(\alpha_s(M_Z), \varepsilon_k) = pV^{-1}p + \sum_{k=1}^{N_{sys}} \varepsilon_k^2$$
$$p_i = d_i - t_i \left(1 - \sum_{k=1}^{N_{sys}} \delta_{i,k} \varepsilon_k\right)$$

$\alpha_{\rm s}$ fits to individual measurements

Normalized inclusive jet

 $\alpha_{s}(M_{Z}) = 0.1197 \pm 0.0008 \text{ (exp)} \pm 0.0014 \text{ (PDF)} \pm 0.0012 \text{ (had)} \pm 0.0054 \text{ (theo)} \chi^{2} / \text{ndf} = 28.7/23 = 1.25$

Normalized dijet

 $\alpha_{s}(M_{Z}) = 0.1142 \pm 0.0010 \text{ (exp)} \pm 0.0017 \text{ (PDF)} \pm 0.0009 \text{ (had)} \pm 0.0048 \text{ (theo)} \chi^{2} / \text{ndf} = 27.0/23 = 1.18$

Normalized trijet

 $\alpha_{s}(M_{Z}) = 0.1185 \pm 0.0018 \text{ (exp)} \pm 0.0013 \text{ (PDF)} \pm 0.0016 \text{ (had)} \pm 0.0043 \text{ (theo)} \chi^{2} / \text{ndf} = 12.0/16 = 0.75$

Results

- High experimental precision
- Reasonable χ^2 /ndf for each fit

Tension between inclusive jet and dijet

Visible also in previous H1 and ZEUS analyses

Theory uncertainties using offset method

• PDF

Obtained from PDF eigenvectors (90%CL)

- Hadronization (had)
 Half-difference between 'Lund string' and 'cluster' fragmentation
- Missing higher orders (theo) Scale variations: μ_r and μ_f between 0.5 and 2

Daniel Britzger

$\alpha_{\rm s}$ fit to normalized multijet cross sections

Simultaneous fit to

- Normalized inclusive jet
- Normalized dijet
- Normalized trijet

Taking statistical correlations between observables into account Demanding NLO corrections < 30%: k<1.3

Normalized Multijet (k < 1.3)

 α_{s} (M_Z) = 0.1163 ± 0.0011(exp) ± 0.0014 (PDF) ± 0.0008 (had) ± 0.0040 (theo)

 χ^2 / ndf = 53.3 / 41 = 1.30

$\alpha_{\rm s}$ (M_z) from H1 multijet cross section

Value consistent with world average (Phys. Rev. D 86 (2012) 010001)

• $\alpha_{\rm s}$ (M_Z) = 0.1184 ± 0.0007

High experimental precision

Precision limited by theory predictions

Daniel Britzger

H1prelim-12-031

Summary

Regularized unfolding

Simultaneous unfolding of four measurements Unfolding of NC DIS, inclusive jet, dijet and trijet data Migrations in up to 6 observables Normalized cross sections can be obtained

Normalized Multijet Measurement at high Q²

- Normalized Inclusive Jet
- Normalized Dijet
- Normalized Trijet

Extraction of $\alpha_s(M_Z)$

α_s fit using unfolded data to NLO QCD
 Covariance matrix is considered
 Also correlations between observables
 Experimental error 1%
 Theoretical errors dominate with 3.4%

0.1163 ± 0.0011 (exp) ± 0.0043 (th)

Comparision of α_s values

HERA and H1

H1 detector

- Multi-purpose detector
- Asymmetric design
- Trackers
 - Silicon tracker
 - Jet chambers
 - Proportional chambers
- Calorimeters
 - Liquid Argon sampling calorimeter
 - Scintillating fiber calorimeter
- Muon detectors
- Superconducting solenoid
 - 1.15T axial-symmetric magnetic field

Comparing unfolding with bin-by-bin method: Monte Carlo

Compare with Monte Carlo pseudodata

- Bin-by-bin correctoin Bin-wise correction factors
- Regularized unfolding

Two Incl. DIS Models

- Rapgap (MEPS)
- Django (CDM)

Statistically independent samples

Checking

- Pseudo-data from 'one' model
- Unfolding matrix from 'other' model

Pull distributions

Corrected vs. true distribution $p_i = \frac{x_i^{\text{unfold}} - x_i^{\text{true}}}{\Delta x_i}$

Unfolding is less biased by Model predictions

Daniei Britzger

Comparing unfolding with bin-by-bin method: Data

Using H1 Data

Average of two MCs for migration matrix

$$A = \frac{A_{\rm Dj} + A_{\rm Rg}}{2}$$

Compare pull values between

- Unfolded data points
- Bin-by-bin corrected data points

Bin-by-bin bias also in data

Statistical uncertainties of unfolding are larger

-> But correlations are known !

Unfolding features a full linear error propagation of (statistical) uncertainties

Unfolding has small, but visible effect on cross sections

Daniei Britzger

Comparing unfolding with bin-by-bin method: Data

Normalised Inclusive Jet Cross Section

Daniel Britzger