

Rare charm decays at LHCb

Olga Kochebina (on behalf of the LHCb collaboration)

Laboratoire de l'Accélérateur Linéaire, Orsay, France

The 2013 European Physical Society Conference on High Energy Physics, **Stockholm, Sweden**

18-24 July, 2013

Outline

Motivations

- Experimental status up to 2011
- General strategy of data analysis
- Recent results for rare charm decays at LHCb with 2011 data
 - D⁰→µ⁺µ⁻
 - $D_{(s)}^+ \rightarrow \pi^+ \mu^+ \mu^-$ and $D_{(s)}^+ \rightarrow \pi^- \mu^+ \mu^+$
- On going activities
- Conclusion

Motivations

Why rare decays?

 Flavor Changing Neutral Currents (FCNC) are very suppressed in the Standard model (SM), possible only via loops.

→ Rare charm decays → Good probe for New Physics

NP particles in the loop → **enhancement of BF,** asymmetries (CP, T-odd, forward-backward).

Why charm decays?

- GIM mechanism is very strong here thanks to the absence of a high-mass down-type quark
- Charm is complementary to the B and K sectors: it's a unique window on NP affecting the up-type quark dynamics.

Motivations

SM short distance (SD) contributions predict tiny BF's

BF($D^0 \rightarrow \mu^+\mu^-$) ~ 10^{-18} [1]BF($D^0 \rightarrow \pi^- \pi^+\mu^+\mu^-$) ~ 10^{-9} [3]BF($D^+ \rightarrow \pi^+\mu^+\mu^-$) ~ 10^{-11} - 10^{-9} [2]BF($D^0 \rightarrow K^+\pi^-\mu^+\mu^-$) ~ 10^{-10} [3]

New physics can enhance the SD contributions. Ex.: R-Parity Violation SUSY

[1] G. Burdman et al. PR D66, 014009 (2002)

[2] G. Buchalla et al. EPJC57,309(2008), S. Fajfer et al, PRD64 (2001) 114009,

[3] L.Cappiello et al. arXiv:1209.4235v1

[4] E. Golowich, PRD79(2009)114030

[5] S. Fajfer et al, PRD76 (2007),074010

Motivations

- Branching ratios dominated
 by long distance (LD) effects, via
 intermediate states
- The solution adopted by present searches is to measure BF's far from the resonances

Ex.

 10^{-3}

10⁻⁵

10⁻⁷

10⁻⁹

10⁻¹¹

10⁻¹³

dBr/dm^e

Mode	T-odd asym	FB asym	
K⁻π⁺μ⁺μ⁻ (CF)	~ 7%	~ 0.06%	
K+π-μ+μ- (DCS)	~ 7%	~ 3%	
K⁺K⁻µ⁺µ⁻	~ 6%	~ 0.5%	
π ⁻ π ⁺ μ ⁺ μ ⁻	~ 8%	~ 0.5%	

We measure the total BF's with present data to predict our future sensitivity (e.g. upgrade).

1

М(µµ) [GeV/c²]

L.Cappiello et al. arXiv:1209.4235 (2013) S.Fajfer et al. PRD87, 054026 (2013) I.Bigi et al. JHEP03, 021 (2012) 5

 $D^+ \rightarrow \pi^+\mu^+\mu^-$

SM: long dis. only SM: short dis. only

2

 $D^+ \rightarrow \pi^+ \mu^+ \mu^-$

FCN

Ex:arXiv:1209.4235v2

Experimental status up to 2011

Belle, PRD81,091102 (2010)
 D0, PRL 100,101801 (2008)
 FOCUS, PLB 572, 21 (2003)
 BaBar, PRD 84, 072006 (2011)
 E791, PRL 86, 3969 (2001)

LHCb detector

- LHCb detector is designed for flavor physics
 - High cc cross-section
 - Forward geometry
 - Vertex and mass resolution
 - Highly flexible trigger, optimized for flavor physics
 - Good particle identification

 $2 < \eta < 5 (15 - 300 \text{ mrad})$ Design luminosity $2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

General analysis strategy

Selection using the typical features for the searched decays.

 Very rare means very high relative combinatorial background
 > Use Multivariate Analysis

Another difficulty with charm decays: very high peaking backgrounds (Ex: D→ππ > 10⁶ × D→µµ)

→ Use particle identification to fight against π → μ misID

Normalized Measurements to help controlling the systematics

 $BF_{(signal)} = BF_{(norm)} \frac{\varepsilon_{(norm)}}{\varepsilon_{(signal)}} \frac{N_{(signal)}}{N_{(norm)}} \qquad \qquad \text{Ex. : } D^+ \rightarrow \pi^+ \mu^+ \mu^- \\ \text{and } D^+ \rightarrow \pi^+ \varphi(\mu^+ \mu^-)$

 π_{slow}

D*

р

 $+ P, P_{T}, IP(D),$

8

 $PID(\mu)$

Efficiencies : simulations + extensive data-driven corrections & systematics $J/\psi \rightarrow \mu\mu$, $D \rightarrow K\pi$, $\Lambda \rightarrow p\pi$, $K_s \rightarrow \pi\pi$: reconstruction, PID, trigger efficiencies ...

 $\pi \leftrightarrow \mu$ misID rate: simulations and control from data: $D \rightarrow K\pi$, with π swapped with μ

Blind analyses, Upper limits from the CLs method [A. Read, J. Phys. G28 (2002)]

CERN-PH-EP-2013-083 LHCb-PAPER-2013-013 arXiv:1305.5059 PLB(2013) in press...

 $D^0 \rightarrow \mu^+ \mu^-$

0.9 fb⁻¹, 2011 data

$D^0 \rightarrow \mu^+\mu^-$ at LHCb

- D^{*}-tagged sample: $D^{*+} \rightarrow D^0 (\rightarrow \mu^+ \mu^-) \pi_{slow}^+$
- **2**D fit: $\Delta m = m(D^{*+}) m(D^0) \& m(D^0)$
 - force π_{slow} to come from PV to improve the resolution on Δm
- Peaking background : $D^{*+} \rightarrow D^{0} (\rightarrow \pi^{-}\pi^{+}) \pi^{+}$ with double misID $\pi \leftrightarrow \mu$
 - The rate of this peaking background is estimated using MC and a high statistics $D^{*+} \rightarrow D^{0} (\rightarrow K^{-}\pi^{+})\pi^{+}$ control sample from real data for the evaluation of the $\pi \leftrightarrow \mu$ misID
 - Yield is fitted in the signal sample with Gaussian constrained
- Normalization mode: $D^{*+} \rightarrow D^{0} (\rightarrow \pi^{-} \pi^{+}) \pi^{+}$

0.9 fb⁻¹, 2011 data

$D^0 \rightarrow \mu^+\mu^-$ at LHCb

⁺**→**π⁺μ⁺μ⁻ D_(s) π-μ+μ+ D_(S) 1 fb⁻¹, 2011 data

$D_{(s)}^+ \rightarrow \pi^+ \mu^- at LHCb$

Signal is extracted in regions of $m(\mu^+\mu)$ $D_{(s)}^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$ (Opposite Sign) LHCb uncorrected data 10³ 10² 10 **FCNC** ρ/ω η O FCNC, NP? NP? 1 200 400 800 1000 m(μ+μ), GeV/c² 600 1200 1400 1600 **D**⁺ $\rightarrow \pi^+ \phi (\mu^\mu)$ mode: (d) LHCb

- Normalization
- "Standard candle": provides a signal proxy to optimize the selection, constrain the PDF's shape, study and correct data/MC...

1 fb⁻¹ 2011 data

$D_{(s)}^+ \rightarrow \pi^+ \mu^- at LHCb$

Peaking background : $D^+ \rightarrow \pi^+ \pi^- \pi^+$ with double misID $\pi \leftrightarrow \mu$

- Shapes determined from data sample (loosened muon ID)
- The fit is able to determine the yields

1 fb⁻¹ 2011 data

$D_{(s)}^+ \rightarrow \pi^+ \mu^- at LHCb$

 $\begin{array}{l} BF(D^+ \rightarrow \pi^+ \mu^+ \mu^-) < 7.3 \ (8.3) \cdot 10^8 \ @ \ 90\% \ (95\%) \ CL \\ BF(D_{\rm s}^+ \rightarrow \pi^+ \mu^+ \mu^-) < 4.1 \ (4.8) \cdot 10^7 \ @ \ 90 \ \% \ (95\%) \ CL \end{array}$

- ✓ ~ 50 times better than previous limit
- ✓ Still orders of magnitude above the SM prediction

with D _(s) +	→π ⁻ µ ⁺ µ ⁺ at	LHCb	c W^+ μ^-	2011 data	
Searches in regions of $m(\mu^+\pi^-)$ which is the mass of a potential majorana neutrino $m(\mu^+\pi^-)? \qquad \qquad$					
Region [MeV/c ²]	250<Μ(μπ) <1140	1140 <m(μπ)<1340< th=""><th>1340<m(μπ)<1540< th=""><th>1540<m(μπ)< th=""></m(μπ)<></th></m(μπ)<1540<></th></m(μπ)<1340<>	1340 <m(μπ)<1540< th=""><th>1540<m(μπ)< th=""></m(μπ)<></th></m(μπ)<1540<>	1540 <m(μπ)< th=""></m(μπ)<>	
$BF(D^+ \rightarrow \pi^+ \mu^+ \mu)$	1.4 (1.7)	1.1 (1.3)	1.3 (1.5)	1.3 (1.5)	
$BF(D_{s}^{+} \rightarrow \pi^{+} \mu^{+} \mu)$	6.2 (7.6)	4.4 (5.3)	6.0 (7.3)	7.5 (8.7)	

Total:

BF(*D*⁺ →π⁻μ⁺μ⁺) < 2.2 (2.5)·10⁻⁸ @ 90% (95%) CL **BF**(*D*_s⁺→π⁻μ⁺μ⁺) < 1.2 (1.4)·10⁻⁷ @ 90% (95%) CL

✓ ~ 50 times better than previous limit

Majorana neutrino searches

 $\checkmark\,$ Still orders of magnitude above the SM prediction

 $1 \, {\rm fb}^{-1}$

Our on going activities

Update of searches with 3 fb⁻¹ full data sample (2011+2012):
 D⁰ →µ⁺µ⁻
 D + >=+u+u

- $D_{(s)}^+ \rightarrow \pi^+ \mu^+ \mu^-$
- New searches
 - $D_{(s)}^+ \rightarrow K^+ \mu^+ \mu^-$
 - $D^{0} \rightarrow \pi^{-}\pi^{+}\mu^{+}\mu^{-}$, $D^{0} \rightarrow K^{-}K^{+}\mu^{+}\mu^{-}$, $D^{0} \rightarrow K^{+}\pi^{-}\mu^{+}\mu^{-}$

- Rare charm decays good tools for the search of the NP
- Charm decays are complementary to the strange and beauty rare decays
- No NP has been seen <u>yet</u>
- Present upper limits for rare charm sector **still above** SM predictions
- Results with 1 fb⁻¹ (2011 data) have been shown
- **New results and new modes** are expected next fall and next year

Thank you for attention!

LHCb detector

LHCb detector

Luminosity (1/fb)

ntegrated

Designed for precise study of CP-violation, flavor-physics:

- forward geometry
- precise momentum and mass reconstruction
- precise vertex reconstruction,
- lifetime reconstruction
- Adapted and highly configurable trigger system
- identification: *π*, *K*, μ

B(D) hadrons are $2 < \eta < 5$ (15 – 300 mrad) producing in high Design luminosity 2×10³² cm-2 s-1 rapidity

LHCb **delivered** (2.0/fb)and **recorded** luminosity in 2012, +1.1/fb indicates recorded luminosity in 2010-2011

LHCb trigger

L0 Hardware Trigger 40 MHz→1 MHz

Search for high p_t, μ, e, γ, hadron candidates CALO p_t > 3.6 GeV, MUON p_t > 1.4 GeV

High Level Software Trigger Farm

- HLT1: Add Impact parameter cuts
- HLT2: Global event reconstruction.
 Exclusive or inclusive offline-like selection (lines)

Adaptation to

- physics priorities
- variation of beam conditions

Muon particle identification

LHCb THCp

High muon/hadron discriminative power based on the Muon System

- Calo (6.2 λ_{l}) + 3 iron absorbers (8cm thick, 20 λ_{l})
- \rightarrow Easy for a μ to traverse 3 to 5 stations (depending on its p)
- ightarrow Difficult for a pion or kaon

Tracks extrapolated from the tracking system

- \rightarrow Easier to find hits close to it if this is a real μ
- \rightarrow <u>Typical distribution</u> of the Average squared distance,

used to build a muon likelihood

$$D^{2} = \frac{1}{N} \sum_{i=0}^{N} \left\{ \left(\frac{x_{closest,i} - x_{track}}{pad_{x}} \right)^{2} + \left(\frac{y_{closest,i} - y_{track}}{pad_{y}} \right)^{2} \right\}$$

Can be combined with other likelihoods based on the muon's signature in the RICH and Calorimeter.

Muon particle identification

