

Mara Senghi Soares CIEMAT - Madrid

on behalf of the CMS Collaboration

EPS2013 - Stockholm 19/July/2013

Outline

• W helicity in top decays

- Electroweak couplings:
 - associated $tt+\gamma$ production
 - associated tt+Z and tt+W production

• Branching ratio: $R=B(t\rightarrow Wb)/B(t\rightarrow Wq)$

W helicity in top decays

- Very sensitive to additional contributions: (BSM or "anomalous") couplings important test of Wtb structure
- W helicity fractions measured from angular distributions:
 - cos(θ*): in t rest frame angle between down-type fermion momentum in W rest frame and W momentum in top rest frame
 in SM (LO):

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta^*} = \frac{3}{8}\left(1-\cos\theta^*\right)^2 F_L + \frac{3}{8}\left(1+\cos\theta^*\right)^2 F_R + \frac{3}{4}\sin^2\theta^* F_0$$

General vertex langrangian:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_{L}P_{L} + V_{R}P_{R})tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}}(g_{L}P_{L} + g_{R}P_{R})tW_{\mu}^{-} + \text{H.c}$$

In the SM: $V_L = V_{tb} \approx 1$ $V_{R,gL,gR}$ are all =0

Straightforward to interpret fractions in terms of anomalous couplings:

simple polynomial dependence

 $F_0 = 0.6902$

 $F_L = 0.3089$

 $F_R = 0.0009$

W helicity in top decays

II+jets

Data: pp@ 7 TeV (1.14 fb⁻¹) / 8 TeV (5.3 fb⁻¹)

Selection for 7 / 8 TeV:

1 muon p_T>20 / p_T>26 GeV

Exactly 2 jets pt> 30 / pt>60 GeV

Exactly 1 tagged as b

M_T>40 / M_T>50 GeV (W transverse mass)

Z mass window 76< M_{II} <106 GeV

At least 2 jets p_T> 30 GeV

At least 1 tagged as b

 $E_T^{miss}>30$ (ee/µµ) or $E_T^{miss}>20$ (eµ) GeV

l+jets

Data: pp@ 7 TeV (5.0 fb⁻¹)

Exactly 1 lepton

p_T>26 (muon) or p_T>30 (electron channel) GeV

At least 4 jets p_T> 30 GeV

At least 2 jets tagged as b

 $M_T>30 \text{ GeV}$

W helicity: single-top topology

- Large contribution from top pairs, specially at 8 TeV
- Measurement from both single-top and top pairs
- Shape and normaliz. of W+jets:

data control samples

	$\sqrt{s} =$	8 TeV	$\sqrt{s} = 7 \mathrm{TeV}$	
Systematic source	$\Delta F_{\rm L}$	ΔF_0	ΔF_L	ΔF_0
JES	0.006	0.006	0.020	0.020
JER	0.008	0.003	0.015	0.010
unclustered energy	0.013	0.003	0.015	0.015
pileup	0.002	0.003	0.004	0.000
b-flavored scale factor	0.004	0.006	0.009	0.009
non-b-flavored scale factor	0.004	0.007	0.002	0.001
single-top generator	0.008	0.014	0.004	0.004
Q ² scale	0.009	0.012	0.040	0.007
m _{top}	0.005	0.006	0.010	0.010
PDF	0.005	0.005	0.000	0.000
tt normalization	0.002	0.003	0.008	0.008
QCD shape	0.002	0.002	0.004	0.004
W+jets shape		0.010	0.010	0.010
integrated luminosity		0.003	0.007	0.007
SM W-helicity reference		0.003	0.001	0.002
total systematic uncertainty (w/o generator)	0.022	0.021	0.054	0.035
total systematic uncertainty	0.024	0.026	0.054	0.035

cos(0*)

PAS:TOP-12-020

Combined results: 7 and 8 TeV

$$\begin{split} F_0 = 0.713 \pm 0.114 \pm 0.023 \\ F_L = 0.293 \pm 0.069 \pm 0.030 \\ F_R = -0.006 \pm 0.057 \pm 0.027 \end{split}$$

W helicity in top decays (II+jets):

Measurement from $\cos(\theta^*)$ both sides

	Fitting F_L , F_0		
Systematic Source	$\pm \delta F_L$	$\pm \delta F_0$	
Top QScale	0.027	0.051	
Top Mass	0.016	0.003	
WZQScale	0.013	0.026	
DY XSection	0.009	0.014	
W XSection	0.000	0.002	
SingleTopTW XSection	0.002	0.008	
JES	0.01	0.006	
Pile-up	0.014	0.017	
PDF	0.004	0.005	
Total	0.040	0.063	

PAS:TOP-12-015

 $\begin{array}{l} F_0 = 0.698 \pm 0.057 \pm 0.063 \\ F_L = 0.288 \pm 0.035 \pm 0.040 \\ F_R = 0.014 \pm 0.027 \pm 0.042 \end{array}$

W helicity in top decays (I+jets)

TOP-11-020 updated,

to be submitted to JHEP

- cos(θ*): needs to identify down-type fermion
- Leptonic branch: d-fermion = lepton (ok!)
- Hadronic branch: d-type quark can not be identified: only $|\cos^{had}(\theta^*)|$ information

W helicity in top decays (I+jets)

- Treating leptonic/hadronic branches independently
 - "3D": fit F₀, F_L, and tt normalization

take $F_R = 1 - F_0 - F_L$ (as in single top and II)

• "2D": set F_R=0

• W+jets and DY+jets normalization and shape from control regions

	μ +jets (cos θ)		θ^*) e+jets (cos θ^*))*)	ℓ +jets (cos θ^*)		
Systematics	3D fit 2D fit		3D) fit	2D fit	3D fit		2D fit	
	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$	$\pm \Delta F_0$	$\pm \Delta F_L$	$\pm \Delta F_0$
b-tag eff.	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$
Single-t bkg.	0.004	$< 10^{-3}$	0.003	0.004	$< 10^{-3}$	0.004	0.004	0.001	0.003
DY+jets bkg.	0.002	0.001	0.001	0.001	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.001
W+jets bkg.	0.019	0.007	0.006	0.009	0.006	0.022	0.013	0.004	0.006
Lepton eff.	0.001	0.001	0.001	0.009	0.012	0.015	0.001	0.002	0.002
JES	0.005	0.003	0.001	0.006	0.002	0.003	0.006	0.003	0.001
$t\bar{t}$ scales	0.013	0.009	0.007	0.015	0.018	0.030	0.009	0.009	0.011
JER	0.009	0.005	0.001	0.014	0.009	0.003	0.011	0.007	0.001
Top-quark mass	0.011	0.008	0.007	0.025	0.018	0.014	0.016	0.011	0.019
Pileup	0.013	0.011	0.008	0.008	0.007	0.005	0.002	$< 10^{-3}$	0.008
t \bar{t} match. scale	0.004	0.001	0.006	0.010	0.013	0.016	0.011	0.010	0.008
PDF	0.002	0.001	0.003	0.004	0.002	0.002	0.002	$< 10^{-3}$	0.003
MC statistics	0.016	0.012	0.009	0.019	0.015	0.012	0.016	0.012	0.010

W helicity in top decays (I+jets)

3 D	F _o	FL	F _R						
50 mu+jets; leptonic branch	د — c — c	•- -•	•-D-3	TIT					
						Lep	tonic branch: $\cos \theta^*$		
e+jets; leptonic branch	rr	1 1	r ⊷D+ 1	Fit	Channel	$F_0 \pm (\text{stat.}) \pm (\text{syst.})$	$F_L \pm (\text{stat.}) \pm (\text{syst.})$	$F_R \pm (\text{stat.}) \pm (\text{syst.})$	ρ_{0L}^{stat}
				3D	μ +jets	0.674 ±0.039±0.035	$0.314 \pm 0.028 \pm 0.022$	$0.012 \pm 0.016 \pm 0.020$	-0.95
				3D	e+jets	$0.688 \pm 0.045 \pm 0.042$	$0.310\ {\pm}0.033 {\pm}0.037$	$0.002 \pm 0.017 \pm 0.023$	-0.95
combined (e,mu)+jets; leptonic branch	1 - 1 - 1	[-]	I+ ∏ +1	2D	μ +jets	$0.698 \pm 0.021 \pm 0.019$	$0.302 \pm 0.021 \pm 0.019$	fixed at 0	-1
				2D	e+jets	$0.691 \pm 0.025 \pm 0.047$	$0.309\ {\pm}0.025 {\pm}0.047$	fixed at 0	-1
MC Decliminary 7 ToV 5 fb ⁻¹						Hadro	nic branch: $ \cos^{had} \theta^* $		
ins Preininary / Tev, 5 lb				Fit	Channel	$F_0 \pm (\text{stat.}) \pm (\text{syst.})$	$F_L \pm (\text{stat.}) \pm (\text{syst.})$	$F_R \pm (\text{stat.}) \pm (\text{syst.})$	ρ_{0L}^{stat}
	h loon hood and h loon hood hood hood hood hood hood hood h			2D	μ +jets	$0.651 \pm 0.060 \pm 0.084$	$0.349 \pm 0.060 \pm 0.084$	fixed at 0	-1
	0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85	0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5	-0.15 -0.1 -0.05 0 0.05 0.1	2D	e+jets	$0.629 \pm 0.060 \pm 0.093$	$0.371\ {\pm}0.060 {\pm}0.093$	fixed at 0	-1

	Fit	Channel(s)	Branch	Frac	tion \pm (stat.) \pm (syst.) [total]	$ ho_{0L}^{ m total}$
ſ	2D	Q Linto	,	F_0	$0.682 \pm 0.030 \pm 0.033 [0.045]$	0.05
	3D	ℓ+jets	1	F_L F_R	$0.310 \pm 0.022 \pm 0.022 \ [0.032]$ $0.008 \pm 0.012 \pm 0.014 \ [0.018]$	-0.95
ł	2D	μ +jets	l+h	F_0	$0.694 \pm 0.020 \pm 0.025 [0.032]$	
				F_L	$0.306 \pm 0.020 \pm 0.025 [0.032]$	-1
ſ	2D	e+jets	l+h	F_0	$0.674 \pm 0.025 \pm 0.028 [0.037]$	
				F_L	$0.326 \pm 0.025 \pm 0.028 [0.037]$	-1
ſ	2D	ℓ+jets	l+h	F_0	$0.685 \pm 0.017 \pm 0.021 [0.027]$	
				F_L	$0.315 \pm 0.017 \pm 0.021 [0.027]$	-1

mu+jets; leptonic branch

mu+jets; hadronic branch

e+jets; leptonic branch

mu+jets; combined leptonic+hadronic branches

F₀

World's most precise:

(with no F_R=0 assumption)

Anomalous couplings from W helicity

• Fix V_L=1 and V_R=0 to SM predictions

1) fix also $g_L=0 \rightarrow \text{set limits on } g_R$ (independent on F_R):

- Use measurement setting F_R=0, more precise F₀
- Limit: $\text{Re}(g_R) = -0.008 \pm 0.024(\text{stat.})^{+0.029}_{-0.030}(\text{syst.})$

2) set limits on $Re(g_R)$ vs $Re(g_L)$

• Use most precise "3D" measurement:

ttZ cross-section

- LHC measurements are crucial: ttV cross section very low to be seen at Tevatron
- tt \rightarrow I+jets and Z \rightarrow II
- Three-lepton final state, event selection:

2 isolated leptons $p_T > 20$ GeV in Z window 3rd lepton $p_T > 10$ GeV at least 3 jets $p_T > 20$ GeV, 2 b-tags $H_T = \sum p_T(jets) > 120$ GeV

PRL 110(2013) 172002 (TOP-12-014)

- Very low SM backgrounds
 - "fake lepton" (e.g. tt+jets, Z+jets with one jet misidentified as lepton), diboson
 - Use control regions with looser selection criteria to measure fakes/ estimate background
 - Single-top +Z (via virtual W, final state: tbZ): taken from simulation
- In the signal region:
 - 9 events (3.2±0.8 expected bkg only)

 $\sigma_{ttZ} = 0.28^{+0.14}$ -0.11(stat)^{+0.06}-0.03(syst) pb

significance: 3.3 σ, (p-value 0.0004) (NLO pred: 0.137 pb)

PRL 110(2013) 172002 (PAS:TOP 12-014)

Selecting 2 same-sign leptons $pp \rightarrow t\bar{t}W \rightarrow (t \rightarrow b\ell^{\pm}\nu)(t \rightarrow bjj)(W \rightarrow \ell^{\pm}\nu)$ $pp \rightarrow t\bar{t}Z \rightarrow (t \rightarrow b\ell^{\pm}\nu)(t \rightarrow bjj)(Z \rightarrow \ell^{\pm}\ell^{\mp})$

<u>Background sources</u> Mis-reconstruction (charge id, fakes) Rare SM:WZ, ZZ,Wγ,WW(++,--),VVV Event selection 2 leptons p_T>55 (30) GeV veto over ttZ selection (3 leptons) 3 jets p_T>20 GeV 1 btag H_T>100 GeV

• 16 events (9.2±2.6 expected bkg only)

 $\sigma_{ttV} = 0.43^{+0.17} - 0.15 (stat)^{+0.09} - 0.07 (syst) pb$

significance: 3.0 σ (p-value 0.002) (NLO pred: 0.306 pb)

ttV summary

Cross sections slightly above but consistent with the Standard Model predictions

Branching ratio: $R=B(t \rightarrow Wb)/B(t \rightarrow Wq)$ q=b,s,d PAS:TOP 12-035

* Key issues : correctly identify b/light-quark jets and its parent top *

- Data: pp @ 8 TeV (2012), 16.7 fb ⁻¹
- Dilepton channel, event selection:

2 isolated leptons $p_T > 20 \text{ GeV}$ $|M_{II}-M_Z| > 15 \text{ GeV} (Z bkg removal) \text{ for ee/}\mu\mu$ $M_{II} > 12 \text{ GeV}$ $E_T^{miss} > 40 \text{ GeV} \text{ for ee/}\mu\mu$ At least two jets separated from leptons $\Delta R \ge 0.3$

- b-tagging: for the analysis, crucial to know efficiency of
 - correctly identifying b-jets using btag (ε_b , $\pm \sim 1-3\%$)
 - accepting light jets passing btag (mistags: $\epsilon_q \sim 14\%, \pm \sim 11\%$)

Friday, July 19, 2013

Measured in data

Branching ratio

Branching ratio

- From $f_{corr} \Rightarrow$ get N, nr of correctly reconstructed and selected tops (thus, of bjets!)
- Given N, from $\epsilon_b, \epsilon_q \Rightarrow$ model the nr expected events for each b-tag multiplicity

Extract R from a likelihood fit to the model entirely based on data

Branching ratio

Systematic uncertainties

Likelihood fit:

Source	Uncertainty (%)
Statistical	0.4
Systematic	3.4
Individual contributions:	
<i>b</i> -tagging efficiency	1.9
$f_{t\bar{t}}^{stat}$	0.5
Mistag rate	0.9
$B(W \rightarrow \ell \nu)$	0.2
DY	0.3
Fake leptons	0.1
JER	0.9
JES	1.0
Luminosity	0.2
ME-PS	1.2
Pileup	0.2
Q^2	1.1
Selection efficiency	0.2
Signal	0.2
Simulation stat.	0.2
Single top cross section	0.1
$f_{\rm correct}^{\rm stat}$	1.1
Extra sources of heavy flavors	0.9
Total	3.4

R=1.023^{+0.036}-0.034 R>0.945 @95%CL

At 7 TeV (TOP 11-029) with 2.2 fb⁻¹: R:=0.98±0.04, R>0.85 @95%CL

FCNC in top pairs

- SM: t→Wb *almost 100%*
- Direct search for flavor changing neutral currents tt \rightarrow Wb +Zq \rightarrow Ivb +Ilq
- $t \rightarrow Zq$ is highly suppressed (BF~10⁻¹⁴), not visible at the LHC unless **new physics occurs**
- Tri-lepton final state, event selection (19.5 fb⁻¹ pp @ 8 TeV)

3 isolated leptons $p_T > 20 \text{ GeV}$ Z mass window: 78 < $M_{\parallel} < 102 \text{ GeV}$ $p_T(Z) > 35 \text{ GeV}$ 3rd lepton $p_T > 10 \text{ GeV}$ at least 2 jets $p_T > 30 \text{ GeV}$ exactly 1 btag $E_T^{miss} > 30 \text{ GeV}$

- Backgrounds from data: classified by nr of b-tags
 - 0 b-tag: **diboson**, Drell-Yan, QCD
 - I b-tag: signal
 - 2 b-tags: **tt**,tbZ,Wtt, Ztt

Selection	data-driven estimation	SM MC prediction
$t \rightarrow Zq (B = 0.1\%)$	—	$6.36 \pm 0.08 \pm 1.27$
WZ		$0.87 \pm 0.10 \pm 0.62$
ZZ	$1.54 \pm 0.12 \pm 0.74$	$0.07 \pm 0.01 \pm 0.05$
Drell-Yan		$0.00 \pm 0.03 \pm 0.02$
tī		$0.74 \pm 0.70 \pm 0.52$
Ztī	$1.60 \pm 4.06 \pm 0.44$	$1.09 \pm 0.13 \pm 0.77$
Wtī	$1.00 \pm 4.90 \pm 0.44$	$0.09 \pm 0.05 \pm 0.06$
tbZ		$0.33 \pm 0.02 \pm 0.23$
Total background	$3.14 \pm 4.97 \pm 1.17$	$3.19 \pm 0.72 \pm 2.26$
Observed events	1	
Expected limit	$\mathcal{B}(t \rightarrow Zq) < 0.10\%$	
Observed limit	$\mathcal{B}(t \rightarrow Zq) < 0.07\%$	_

I event observed (3.14 expected)

Summary and conclusions

- Important tests of the Standard Model validity on 2011 and 2012 LHC data:
- W helicity in top decays measured with unprecedented precision
 - Stringent constraints on anomalous couplings
- Measurements of ttV (V=Z,W) cross sections presented
 - ttV in hadron colliders: unique for LHC
 - first steps towards understanding structure of electroweak couplings to tops
- $R=B(t \rightarrow Wb)/B(t \rightarrow Wq) > 0.85$ at 95%CL
- Limits on FCNC in top pairs were set (BF<0.05% at 95%CL)
- Consistency with the Standard Model in all measurements

All results can be found in https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Additional slides

Fitting method

• Likelihood fit with $\mathcal{L}(\vec{F}) = \prod_{bin \ i} \frac{N_{MC}(i;\vec{F}) \ N_{data}(i)}{(N_{data}(i))!} \exp\left(-N_{MC}(i;\vec{F})\right).$

$$\begin{split} \mathbf{N}_{\mathrm{MC}}(i,\vec{F}) &= \mathbf{N}_{\mathrm{BKG}}(i) + \mathbf{N}_{\mathrm{t\bar{t}}}(i;\vec{F}) \\ \mathbf{N}_{\mathrm{t\bar{t}}}(i;\vec{F}) &= \mathcal{F}_{\mathrm{t\bar{t}}} \left[\sum_{\mathrm{t\bar{t} \ events, \ bin \ i}} W(\cos\theta_{gen}^{*};\vec{F}) \right] \\ \mathbf{N}_{\mathrm{BKG}}(i) &= \mathbf{N}_{\mathrm{W+jets}}(i) + \mathbf{N}_{\mathrm{Drell-Yan+jets}}(i) + \mathbf{N}_{\mathrm{Single-Top}}(i) \end{split}$$

Number of expected tt for different helicity configurations F
 obtained by reweighting

$$W(\cos\theta_{gen}^{*};\vec{F}) \equiv \frac{\rho(\cos\theta_{gen}^{*})}{\rho^{SM}(\cos\theta_{gen}^{*})} = \frac{\frac{3}{8}F_{L}(1-\cos\theta_{gen}^{*})^{2} + \frac{3}{4}F_{0}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}(1+\cos\theta_{gen}^{*})^{2}}{\frac{3}{8}F_{L}^{SM}(1-\cos\theta_{gen}^{*})^{2} + \frac{3}{4}F_{0}^{SM}\sin^{2}\theta_{gen}^{*} + \frac{3}{8}F_{R}^{SM}(1+\cos\theta_{gen}^{*})^{2}}$$

Electroweak couplings: gauge-boson associated tt production

 Important Standard Model test: new physics modifies the structure of the electroweak couplings, described by

see e.g. U.Baur et al., PRD71 (2005) 054013

$$\Gamma^{ttV}_{\mu}(k^2, q, \bar{q}) = -ie \left\{ \gamma_{\mu} \left(F^V_{1V}(k^2) + \gamma_5 F^V_{1A}(k^2) \right) + \frac{\sigma_{\mu\nu}}{2m_t} \left(q + \bar{q} \right)^{\nu} \left(iF^V_{2V}(k^2) + \gamma_5 F^V_{2A}(k^2) \right) \right\}$$

$$\begin{split} F_{1V}^{\gamma,SM} &= -\frac{2}{3} \,, \\ F_{1V}^{Z,SM} &= -\frac{1}{4\sin\theta_W\cos\theta_W} \left(1 - \frac{8}{3}\sin^2\theta_W\right), \qquad F_{1A}^{Z,SM} = \frac{1}{4\sin\theta_W\cos\theta_W} \,, \\ F_{2V}^{\gamma,SM} &= F_{2V}^{Z,SM} = 0 \,, \end{split}$$

Precision measurements on ttV final states sensitive to anomalous couplings

- tt production via intermediate V very difficult
 - small correction to a QCD dominated process
- Instead, measure *cross-sections*: ttZ, ttW production
- Tests of the electroweak sector in top physics specially interesting
- LHC measurements are crucial: ttV cross section very low to be seen at Tevatron

Top quark charge

- SM electroweak isospin parter of b quark (of q=-1e/3) : charge = +2e/3
- Other possible decay to W and b quark: exotic particle charge -4e/3

* Key issue : to identify b-quark jet and its charge *

- identification of b-initiated jets (b-tagging): long lifetime of B hadrons, jets with large impact parameter; soft (low-p_T) muons from B decays
- identification of b quark charge
 more complicated! Methods:
 - I. from the charge of the soft muon (same sign as B-hadron in direct decays)
 - smeared by flavour oscillations of neutral B mesons
 - smeared by B-hadron cascades through charmed hadrons
 - 2. from the momentum-weighted charge of all charged particles in the jet

$$Q_{bjet} = \frac{\sum_{i} q_i |\vec{j} \cdot \vec{p}_i|^{\kappa}}{\sum_{i} |\vec{j} \cdot \vec{p}_i|^{\kappa}}$$

K MC derived parameter =0.5 *i* runs over all tracks

Top quark charge

PAS:TOP 11-031 4.6 fb⁻¹ tt $\rightarrow \mu \nu$ +jets

exactly1 isolated muon p_T>26 GeV >=4 jets p_T>30 GeV 2 btags

• Systematic uncertainties

Category	Rel. Sys. Uncertainty on Psignal	Rel. Sys. Uncertainty on A
Matching Threshold	5%	23 %
b Charge MisID	2.5%	12%
Top Mass	2%	8%
JES	1%	7%
Q^2	0.5%	3%
Fragmentation Model	0.6%	3%
JER	0.1%	3%
b-tagging	0.2%	2%
Pileup	0.4%	2%

Soft lepton: $+I\mu$ within jet (pT>4 GeV)

* Exotic scenario excluded at 5 σ *