

Measurement of W/Z Boson Properties at the Tevatron

The Universit of Mancheste

HEP 2013 Stockholm 18-24 July 2013

Stefan Söldner-Rembold

University of Manchester on behalf of the CDF and DØ Collaborations

Motivation

0.0

-1.2

0.1

0.2

0.0

-1.6

-1.1

G fitter SM

M

M_w

 Γ_{W}

 M_{7}

 Γ_{z}

 σ_{had}^{0}

 $\mathbf{R}^{0}_{\text{lep}}$

Higgs boson discovery allows us to test the self-consistency of the SM.

No significant deviation from SM expectations so far.

The University of Manchester

fitter

Motivation

Electroweak precision measurements limited by theoretical inputs:

- Parton Distribution Functions (PDFs)Constrained by W charge asymmetries
- W boson transverse momentum

Constrained by Z boson p_T (or ϕ^*)

see talk by Tibor Kurca in this session.

80.5 S M^{80.45} 80.5 m^{kin} Tevatron average ± 68% and 95% CL fit contours w/o M_w and m_t measurements 68% and 95% CL fit contours w/o M_w, m, and M_H measurements M_w world average $\pm 1\sigma$ 80.4 80.35 80.3 M#125.7 80.25 G fitter 150 160 170 190 200 140 180 m, [GeV]

	CDF (2.2 fb ⁻¹)	1919DØ (4.3 fb ⁻¹)
Experimental	10	18
PDFs	10	11
QED radiation	4	7
p _T (W) model	5	2
Statistics	12	13
Total uncertainty	19	26

Example: M_w

Predicted and measured M_W agree within 1.3σ

Highest energy proton-antiproton collider, with $\sqrt{s} = 1.96$ TeV

18 July 2013

Stetan Soldner-Rembold

Integrated Luminosity

- W Boson is mostly produced by valence quarks at Tevatron.
- u/anti-u quarks carry more momentum than d/anti-d quarks.
- W⁺/W⁻ preferentially boosted in proton/anti-proton direction.

The University of Manchester MANCHESTER

A

$$(y_W) = \frac{\frac{d\sigma(W^+)}{dy_W} - \frac{d\sigma(W^-)}{dy_W}}{\frac{d\sigma(W^+)}{dy_W} + \frac{d\sigma(W^-)}{dy_W}}$$
$$\simeq \frac{u(x_1)/d(x_1) - u(x_2)/d(x_2)}{u(x_1)/d(x_1) + u(x_2)/d(x_2)}$$

- u(x) and d(x) are the PDFs of the valence u quark and d quark in the proton
- x₁ and x₂ are the momentum fractions in the proton and anti-proton.

- W boson rapidity cannot be reconstructed directly at a hadron collider.
- Use lepton charge from W boson decay as observable.

 $20 < p_T^{e,\mu} < 35 \text{ GeV}$

Differenc

1.4

A_u (L = 4.9 fb^{-'}) $(L = 0.75 \text{ fb}^{-1})$

1.2

1

CTEQ6.6 central value

1.4

MRST04NLO central value

CTEQ6.6 uncertainty band

1.6

1.2

1.6

Pseudorapidity

1.8

0.3

. 0.25⊨

0.2

0.15

0.1

DØ Preliminary

25 < p₊^l < 35 GeV $p_{T}^{v} > 25 \text{ GeV}$

Asymmetry

The University of Manchester

Experimental uncertainties smaller than theoretical uncertainties from PDFs

Strong constraints on PDFs.

Muon and electron results consistent

1.8 Pseudorapidity

The Universit of Mancheste

Z Boson Kinematics

- Low p_T(Z) region important for inclusive cross sections.
- Requires soft-gluon resummation
- Large effect due to small-x broadening (x<0.01)

Systematical uncertainty is dominant already at 1 fb⁻¹ due to experimental resolution on $P_T(Z)$.

New variable ϕ^* :

- Determined only from angles (good resolution)
- Less correlated with lepton isolation than p_T
 - (1) M. Vesterinen, T.R. Wyatt, NIM A 602, 432 (2009)
 - (2) A. Banfi et all., , EPJ C 71, 1600 (2011).

L=7.3 fb⁻¹ 970k Z boson events (ee, $\mu\mu$)

The Universit of Mancheste

The Universit

Z Boson Kinematics

Significant deviations from model predictions observed at small ϕ^*

The University of Manchester

$$\frac{dN}{d\cos\theta} \propto 1 + \cos^2\theta + \frac{1}{2}A_0(1 - 3\cos^2\theta) + A_4\cos\theta$$

 $A_4 \cos \vartheta$ is a parity-violating asymmetry term due to γ -Z and Z self-interference.

Measuring A₄ allows to extract $\sin^2 \vartheta_W$ and $\sin^2 \theta_{eff}^{lep}$

1. Central–Central (CC)

- $E_{\rm T} > 25$ (15) GeV for electron 1 (2)
- $0.05 < |\eta_{\rm det}| < 1.05$
- 2. Central–Plug (CP)
 - $E_{\rm T} > 20 \text{ GeV}$ for both electrons
 - Central electron: $0.05 < |\eta_{det}| < 1.05$
 - Plug electron: $1.2 < |\eta_{det}| < 2.8$
- 3. Plug–Plug (PP)
 - $E_{\rm T} > 25 {\rm ~GeV}$ for both electrons
 - $1.2 < |\eta_{\rm det}| < 2.8$

The University of Mancheste

$$\frac{dN}{d\cos\theta} \propto 1 + \cos^2\theta + \frac{1}{2}A_0(1 - 3\cos^2\theta) + A_4\cos\theta$$

 $A_4 \cos \vartheta$ is a parity-violating asymmetry term due to γ -Z and Z self-interference.

Measuring A₄ allows to extract $\sin^2 \vartheta_W$ and $\sin^2 \theta_{eff}^{lep}$

1. Central–Central (CC)

- $E_{\rm T} > 25$ (15) GeV for electron 1 (2)
- $0.05 < |\eta_{\rm det}| < 1.05$
- 2. Central–Plug (CP)
 - $E_{\rm T} > 20 \text{ GeV}$ for both electrons
 - Central electron: $0.05 < |\eta_{det}| < 1.05$
 - Plug electron: $1.2 < |\eta_{det}| < 2.8$
- 3. Plug–Plug (PP)
 - $E_{\rm T} > 25 {\rm ~GeV}$ for both electrons
 - $1.2 < |\eta_{\rm det}| < 2.8$

EW Mixing Angles

- The Higgs discovery allows us to perform EW precision tests of the self-consistency of the Standard Model.
- Some precision EW measurements start to be theoretically limited.
- W/Z properties measurements:
 - W charge asymmetry provides direct constraints on the valence quark PDFs – unique to Tevatron.
 - Z boson $p_T(\phi^*)$ measurements improve modeling of vector boson p_T method pioneered by DØ.
 - Novel method to extract weak mixing angle from Z decays (CDF).
 - Several publications using full data sets in the pipeline.