Study of the anomalous like-sign dimuon charge asymmetry in $p\bar{p}$ collisions

B. Hoeneisen

Universidad San Francisco de Quito Representing the DØ Collaboration EPS-HEP 2013

The DØ detector.

1. Motivation: (in 1992!) CP violation in mixing of $B^0 \leftrightarrow \bar{B}^0$ and $B^0_s \leftrightarrow \bar{B}^0_s$

```
Example: p\bar{p} \to b\bar{b}X, b \to B^- \to \mu^- ("right sign" \mu), \bar{b} \to B^0 \to \bar{B}^0 \to \mu^- ("wrong sign" \mu) \bar{b} \to B^+ \to \mu^+ ("right sign" \mu), b \to \bar{B}^0 \to B^0 \to \mu^+ ("wrong sign" \mu)
```

2. Outline of the measurement:

Two data sets: Like-sign dimuons and inclusive muons.

"Raw" charge asymmetries:

$$A \equiv \frac{N(\mu^{+}\mu^{+}) - N(\mu^{-}\mu^{-})}{N(\mu^{+}\mu^{+}) + N(\mu^{-}\mu^{-})}; \quad a \equiv \frac{n(\mu^{+}) - n(\mu^{-})}{n(\mu^{+}) + n(\mu^{-})}$$

"Residual" charge asymmetries:

$$A_{CP} \equiv A - A_{\text{bkg}}; \ a_{CP} = a - a_{\text{bkg}}.$$

Model independent asymmetries: A_{CP} and a_{CP} are normalized to all muons. The corresponding asymmetries A_S and a_S have normalizations that exclude muons from kaon and pion decay.

$$\begin{array}{rcl} a_{CP} &=& a-a_{\rm bkg} \\ a_{\rm bkg} &=& a_{\mu}+f_K a_K+f_{\pi} a_{\pi}+f_p a_p \end{array}$$

- The fraction of muons from kaon decay f_K is measured with $K^{*0} \to K^+\pi^-$ and $K^+ \to \mu^+\nu$. $f_{K^{*0}}$ converted to f_K with $K^{*+} \to K_S\pi^+$ and $K_S \to \pi^+\pi^-$.
- The charge asymmetry of muons from kaon decay a_K is measured with $K^{*0} \to K^+\pi^-$ or $\phi \to K^+K^-$, followed by $K^+ \to \mu^+\nu$.
- The muon detector charge asymmetry a_{μ} is measured with $J/\psi \to \mu^{+}\mu^{-}$ reconstructed from tracks only.
- New cross-check: The background fraction $f_K + f_{\pi}$ is also measured from "central" vs. "muon" tracks.

3. History

Residual asymmetry $A_{CP} = A - A_{\rm bkg}$ measured with different integrated luminosities $\int L dt$.

$\int Ldt$	asymmetry A_{CP}		(DØ), Phys.Rev. D
$1.0 \; \text{fb}^{-1}$	$(-0.28 \pm 0.13 \pm 0.09)\%$	1.7σ *	74 , 092001 (2006)
6.1 fb^{-1}	$(-0.252 \pm 0.088 \pm 0.092)\%$	3.2σ *	82 , 032001 (2010)
9.0 fb^{-1}	$(-0.276 \pm 0.067 \pm 0.063)\%$	3.9σ *	84 , 052007 (2011)
10.4 fb^{-1}	$(? \pm 0.064 \pm 0.055)\%$	$?\sigma$ &	# (2013)

- * Discrepancy with $A_{CP}^{\rm mix}({\rm SM})$ only.
- & Discrepancy with $A_{CP}^{\text{mix}}(\text{SM})$ and $A_{CP}^{\text{int}}(\text{SM})$.
- # In DØ Collaboration review. Preliminary.

4. CPV in interference of B^0

Example:
$$p\bar{p} \to b\bar{b}X$$
, $b \to B^- \to \mu^-$ ("right sign" μ), $\bar{b} \to B^0 (\to \bar{B}^0) \to D^+ D^-$, $D^- \to \mu^-$ ("wrong sign" μ) $\bar{b} \to B^+ \to \mu^+$ ("right sign" μ), $b \to \bar{B}^0 (\to B^0) \to D^+ D^-$, $D^+ \to \mu^+$ ("wrong sign" μ)

 D^+D^- is CP-even.

$$\frac{d\Gamma(\bar{B}^0 \to D^+ D^-)}{dt} \propto \exp(-\Gamma_d t) \left[1 - \sin(2\beta) \sin(\Delta m_d t)\right],$$

$$\frac{d\Gamma(\bar{B}^0 \to D^+ D^-)}{dt} \propto \exp(-\Gamma_d t) \left[1 + \sin(2\beta) \sin(\Delta m_d t)\right].$$

For this decay $\bar{B}^0(B^0) \to D^+D^-$:

$$A_S^{\text{int}} = -\sin{(2\beta)} \frac{x_d}{1 + x_d^2}.$$

This asymmetry is numerically LARGE because $\sin(2\beta) = 0.679 \pm 0.020$ and $x_d \equiv \Delta m_d/\Gamma_d = 0.770 \pm 0.008$.

CPV in interference does not contribute to a_{CP} : because $D^+ \to \mu^+$ cancels $D^- \to \mu^-$.

5. Status with 9.0 fb⁻¹ (2011):

Comparison between experiment and the standard model:

```
a_{CP}(\text{data}) = (-0.034 \pm 0.042 \pm 0.073)\%, a_{CP}^{\text{mix}}(\text{SM}) = (-0.0007 \pm 0.0002)\%, a_{CP}^{\text{int}}(\text{SM}) = (-0.000 \pm 0.000)\%, A_{CP}(\text{data}) = (-0.276 \pm 0.067 \pm 0.063)\%, A_{CP}^{\text{mix}}(\text{SM}) = (-0.008 \pm 0.002)\%, A_{CP}^{\text{int}}(\text{SM}) = (-0.035 \pm 0.008)\%.
```

What is the cause of this discrepancy?

From DØ, Phys. Rev. D **84** 052007 (2010), and G. Borissov and B. Hoeneisen, Phys. Rev. D **87**, 074020 (2013).

6. Experimental constraints

Contributions to A_S allowed by experiments: (compare with $A_S = (-0.383 \pm 0.092 \pm 0.102)\%$ PRD (2011))

Process	Allowed A_S
Mixing of B^0	$(+0.062 \pm 0.073)\%$
Mixing of B_s^0	$(-0.111 \pm 0.093)\%$ *
Interference of B^0	$(-0.045 \pm 0.016)\%$ (SM)
Interference of B_s^0	$(-0.0009 \pm 0.0003)\%$ (SM)
CPV in $b \to c \overline{c} \overline{q}$ decays	$(+0.000 \pm 0.001)\%$
$a_{(b)}$ in $b \to \mu X$ decays	$(-0.17 \pm 0.43)\%$
$a_{(c)}$ in $c \to \mu X$ decays	$(-0.07 \pm 0.19)\%$

G. Borissov and B. Hoeneisen, Phys. Rev. D **87**, 074020 (2013) *From $B_s^0 \to J/\psi \phi$ at LHCb, assuming that new physics CPV is not cancelled by penguin contributions, $a_{\rm Sl}^s = (-0.01 \pm 0.05)\%$, and this entry becomes negligible.

7. Preview of measurement with 10.4 fb^{-1} (preliminary 2013)

All measurements are done in 9 exclusive bins of $(p_T, |\eta|)$:

```
3 p_T bins for "central" muons with |\eta| < 0.7
```

- p_T bins for "corner" muons with 0.7 < $|\eta|$ < 1.2
- p_T bins for "forward" muons with $1.2 < |\eta| < 2.2$

Closure test with inclusive muons: a_{CP} for all IP:

Same for 27 exclusive bins of p_T , η and IP

IP from 0 to 50 μ m: (asymmetry from kaon decay dominates)

IP from 50 to 120 μ m:

IP from 120 to 3000 μ m: (detector asymmetry $a_{\mu} \approx -f_K a_K$)

• For inclusive muons the charge asymmetry a_{CP} is measured in 27 exclusive bins: 9 bins of $(p_T, |\eta|)$ times 3 bins of IP.

• For like-sign dimuons the charge asymmetry A_{CP} is measured in 54 exclusive bins: 9 bins of $(p_T, |\eta|)$ times 6 bins of (IP_1, IP_2) .

• In all cases the asymmetries a_{CP} and A_{CP} do not vary significantly with $(p_T, |\eta|)$.

8. Interpretation

$$A_S = A_S^{\text{int}} + A_S^{\text{mix}} + ?,$$

$$A_S^{\text{int}} \propto \frac{\Delta \Gamma_d}{\Gamma_d},$$

$$A_S^{\text{mix}} = C_b A_{\text{SI}}^b,$$

$$A_{\text{SI}}^b = C_d a_{\text{SI}}^d + C_s a_{\text{SI}}^s,$$

$$a_{\text{SI}}^q = \frac{\Delta \Gamma_q}{\Delta m_q} \tan(\phi_q^{12}),$$

The measurements of a_{CP} and A_{CP} as a function of impact parameter obtain a_{SI}^d , a_{SI}^s and $\Delta \Gamma_d / \Gamma_d$ (and ?).

 $\phi_q^{12} \equiv \arg\left(-m_q^{12}/\Gamma_q^{12}\right)$ is the phase of the hamiltonian of $B_q^0 \leftrightarrow \bar{B}_q^0$ mixing and decay.

9. Questions (instead of Conclusions!)

• $\Delta\Gamma_d/\Gamma_d(\text{SM})$ is predicted to be $(0.42\pm0.08)\%$. Is it possible that $\Delta\Gamma_d/\Gamma_d\approx1\%$ or 2% due to low energy, non-perturbative contributions?

- Is it possible that we are still missing other significant standard model contributions to A_{CP} ?
- Are we seeing hints of new physics? Confirmation by other experiments is necessary.