Top Quark Mass Measurements at the Tevatron

Reinhild Yvonne Peters

Georg-August University Göttingen & DESY

on behalf of the CDF & DØ Collaborations

CDF and DØ

- Tevatron: proton-antiproton collisions
 - Run I: 1992-1996
 with √s=1.8 TeV
 - Run II: March 2001 to 30.09.2011, 14:00 with √s=1.96 TeV
- Two general-purpose detectors:
 - CDF and DØ
- About 10fb⁻¹ of data collected per experiment

Top Quark Mass

- Free parameter of the SM
- Together with W mass: puts constraint on Higgs mass → selfconsistency check
 80.5 March 2012
 LHC excluded

 Several methods explored for precision top mass measurement: Template method, ideogram, matrix element, etc.

tt Final States

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$: Final states are classified according to W decay

 $B(t \rightarrow W^{+}b) = 100\%$

met+jets:

lepton+jets events without identified electron or muon

dilepton: 2 isolated leptons; ^{t+t} High missing E_T ^t from neutrinos; "dile 2 b-jets

pure hadronic:

- Recent Tevatron top mass combination
 - Results using up to 8.7fb⁻¹
 - Run I and Run II results
- Combination performed using BLUE

 $m_t = 173.20 \pm 0.51 (stat) \pm 0.71 (syst) GeV$

- Limited by systematic uncertainties
 - Dominant: signal modeling and light-jet calibration
- Combination has χ^2 of 8.5 for NDF of 11 \rightarrow probability of 67%

- Weights per measurement:
 - Negative weights (grey) if large correlations

- Weights per measurement:
 - Negative weights (grey) if large correlations

L+jets Analyses

- I+jets selection:
 - 1 high-p₁ (>20GeV) isolated electron or muon
 - $|\eta| < 1.1$ of the lepton (DØ: $|\eta| < 2$ for muons)
 - \geq 4 jets with $|\eta| < 2.5$ (CDF: $|\eta| < 2.0$ or $|\eta| < 2.4$) and $p_{\tau} > 20 \text{GeV}$ (CDF: for loose jets: $p_{\tau} > 12 \text{GeV}$)

- CDF: ==4 jets with $E_T > 20 \text{GeV}$ and $|\eta| < 2.0$; or : three tight
- Missing E₁>20GeV
- Identification of b-jets
- Alljets and I+jets: Take info from hadronically decaying W mass to constrain jet energy scale

L+jets Analyses (CDF)

- Events divided into subsamples (0,1,2 b-tags)
- Reconstruct tt kinematics
 - Constraints from known W mass
 - Require t and t mass to be the same
 - $\rightarrow \chi^2$ minimization
 - Use m^{reco} yielding lowest X²
 - And $m_t^{reco(2)}$ yielding second lowest χ^2
- From m_{jj}: constrain JES
- Perform unbinned maximum likelihood fit

L+jets Analyses (CDF)

Best single measurement:

 $m_t = 172.85 \pm 0.71 (stat) \pm 0.85 (syst) GeV$

- Main systematic uncertainties:
 - Signal modeling: MC generator
 - Color reconnection
 - Residual JES
 - b-jet energy scale
- Highest weight in Tevatron combination

PRL 109, 152003 (2012)

L+jets Analyses (DØ)

- Matrix element method: Use full event kinematics
 → most precise method
- For each event calculate probability to belong to certain top mass

L+jets Analyses (DØ)

- In I+jets events (3.6fb⁻¹)
 - JES also constrained from hadronically decaying W boson
- Measured value:

 $m_t = 174.94 \pm 0.83(stat) \pm 0.78(JES) \pm 0.96(syst) GeV$

- Main systematics:
 - Signal modeling: hadronization and UE; color reconnectior
 - Modeling of detector: jet energy resolution; jet response
- Analysis of full dataset ongoing

$\not E_T$ +jets Analysis (CDF)

- Events from I+jets, where no muon or electron is reconstructed $\rightarrow \not E_{T} + jets$
- Reconstruct m^{reco} and m^{reco(2)}
 - Use jets and 𝔼_T → modified kinematic fitter (both decay particles of leptonically decaying W missing)
 200
 - Events with 4,5,6 jets and 1 or >1 b-tag
 - Events with 5 jets: τ+jets with τ misidentified as jets

• Mass (8.7fb⁻¹):

$$m_t = 173.93 \pm 1.64 (stat) \pm 0.87 (syst) GeV$$

Main systematics: residual JES; signal modeling (MC generator)

Alljets Analysis (CDF)

- - Main challenge: large QCD multijet background
 → data-driven background determination
 - Construct neural network based on variables depending on energy, direction and shape of jets
 CDF Run II Preliminary (5.8 fb⁻¹)
- Top reconstruction: using χ^2 -like quantity
 - W mass constraint for in-situ JES fit
- Mass (5.8fb⁻¹):

$$n_t = 172.5 \pm 1.4 (stat) \pm 1.4 (syst) GeV$$

 Main systematics: signal modeling (MC generator), background model, residual JES

Dilepton Analysis (DØ)

- Dilepton events: very clean signature; but: two neutrinos
 - More challenging event reconstruction
 → under-constrained kinematics
- Two methods explored at DØ with 5.3fb⁻¹:
 - Matrix element method
 - Neutrino weighting technique
- Neutrino weighting:
 - Assume neutrino ηs
 - solve event kinematics for each assumption

 - Calculate weight based on the comparison of calculated and measured ∉_⊥

Dilepton Analysis (DØ)

- First two moments of weight distribution used (mean and rms)
- Use in-situ JES measurement from I+jets to constrain JES in dilepton channel
 → improved jet energy calibration
- Combined mass from matrix element and neutrino weighting:

 $m_t = 173.9 \pm 1.9(stat) \pm 1.6(syst) GeV$

 Main systematics: JES; signal modeling (MC generator)

Yvonne Peters

Mass of the Top Quark in Different Decay Channels

Yvonne Peters

Top Quark Mass: Be aware

- Ongoing discussion: What is theoretical interpretation of the measured parameter?
 - We extract the top mass based on Monte Carlo \rightarrow Is it the pole mass?
- Alternative method: Extract m, from measurement of tt cross section
 - Assuming MC mass =pole or MS mass
 - Take difference as systematics
 - Calculate $\sigma_{\rm ff}$ as function of pole mass; compare to measured $\sigma_{\!_{\rm f\bar{f}}}\,{\rm as}$ function of pole mass → Extract pole mass: $m_t = 167.5^{+5.2}_{-4.7} GeV$

- Assuming MS mass leads to ~7GeV smaller value
- World average a bit more compatible with pole mass

PLB 703, 422-427 (2011)

Top-Antitop Mass Difference

- Do top and anti-top have equal mass?
 - If not: CPT violation!
- Using template technique (I+jets)
 - CDF (Assume average top mass of 172.5GeV) m_t - m_t=-1.95±1.26GeV (8.7fb⁻¹)
 - Final mass difference measurement from CDF
- Using Matrix Element technique (I+jets)
 - P_{sig}(x;m_t, m_t) instead of P_{sig}(x;m_t)
 - DØ: m_t m_t=0.8±1.9GeV (3.6fb⁻¹)
- Both measurements still statistically limited
- Good agreement with the SM!

PRD 87, 052013 (2013)

Summary

New Tevatron top mass combination: uncertainties of 0.5%!

 $m_t = 173.20 \pm 0.51(stat) \pm 0.71(syst) GeV$

- Various techniques and channels explored for precision top mass measurements
- Final data samples from CDF and DØ: explored right now
 → more results to come

More details:

DØ: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html CDF: http://www-cdf.fnal.gov/physics/new/top/top.html

BACKUP

Jet Energy Scale

19.07.2013

Yvonne Peters