The search for rare decays of the Higgs boson with ATLAS and CMS

Johannes Elmsheuser

Ludwig-Maximilians-Universität München, Germany

on behalf of the ATLAS and CMS Collaborations

19 July 2013

EPS HEP 2013 Stockholm
ATLAS and CMS detectors and Datasets

Johannes Elmsheuser (LMU München)

Rare Higgs decays in ATLAS and CMS

19/07/2013 2 / 19
SM Higgs Boson Production at the LHC

Gluon fusion:
- known at NNLO (theo. uncert. O(15%))

Vector boson fusion:
- known at NLO (theo. uncert. O(5%))
- distinctive exp. signature: 2 forward jets and rapidity gap

Associated WH/ZH:
- known at NNLO (theo. uncert. O(5%))
Higgs Boson Decays

Direct decay products:

Visible decay products in detector:

Focus of this talk on the rare Higgs boson decays:

- $H \rightarrow Z\gamma$ (ATLAS $4.6+20.7 \text{ fb}^{-1}$, CMS $5.0+19.6 \text{ fb}^{-1}$)
- $H \rightarrow \mu\mu$ (ATLAS 20.7 fb^{-1})
- $ZH, H \rightarrow$ invisible (ATLAS $4.7+13.0 \text{ fb}^{-1}$, CMS $5.1+19.6 \text{ fb}^{-1}$)
Motivation:

- The $H \to Z\gamma$ decay proceeds via electroweak loop coupling to the Higgs boson, together with the $H \to \gamma\gamma$ channel can provide strong constraints on BSM particles in the loops.
- The $BR(H \to Z\gamma)$ is comparable to $BR(\to \gamma\gamma)$, but $BR(Z \to \ell\ell)$ reduces sensitivity (factor 15)
- Inclusive production

Event Selection:

- At least 2 isolated opp. charged high p_T electrons or muons
- At least 1 high p_T isolated photon
- $\Delta R(\gamma, \ell) > 0.3 \ (0.4)$ ATLAS (CMS)
- $m_{\ell\ell\gamma} > m_Z - 10 \text{ GeV}$ (ATLAS), $100 \text{ GeV} < m_{\ell\ell\gamma} < 180 \text{ GeV}$ (CMS)
H → Zγ: Distributions

m_{llγ} Distribution for Electron and Muon Channel

- **Classes:** central γ & leptons, (un-)converted γ, endcap γ or lepton

Δm(m_{llγ} − m_Z) Distribution for Electron Channel

- Insensitive to lepton energy uncert., reduced FSR H → μμ

Backgrounds from Z + γ (both ISR and FSR) and Z+jets estimated from data driven methods, small contributions from top and WZ from MC
\(H \rightarrow Z\gamma: \text{Fit and Uncertainties} \)

- Fit BG 3rd order polynomial to \(\Delta m \) in data
- Main systematic uncertainties: acceptance (5%), \(e/\gamma \) resolution (5%)

H → Zγ: Results

Limits (CMS):
- Observed: $3-31 \cdot \sigma_{SM}$
- Expected: $6-19 \cdot \sigma_{SM}$

Limits (ATLAS):
- Observed: $5.4-37 \cdot \sigma_{SM}$
- Expected: $7.3-22 \cdot \sigma_{SM}$

Any deviations from SM prediction will be indication of new electroweak particles coupling to Higgs boson.
ZH, $H \rightarrow \text{INVISIBLE}$

Motivation:

- Higgs couplings to non SM stable or long lived particles is excellent way to search for new physics, in particular Dark Matter through so called Higgs portal models. The search performed by looking for excess in events at high E_T^{miss}

Event Selection:

- 2 isolated high p_T electrons or muons
- $|m_Z - m_{\ell\ell}| < 15$ GeV
- $E_T^{\text{miss}} > 90$ GeV (ATLAS), reduced $E_T^{\text{miss}} > 110$ GeV (CMS)
- $\Delta \phi(E_T^{\text{miss}}, p_T^{\text{miss}}) < 0.2$ (ATLAS)
- $\Delta \phi(E_T^{\text{miss}}, p_T^{\ell\ell}) > 2.6$
- $\Delta \phi(\ell\ell) < 1.7$ (ATLAS)
- $|E_T^{\text{miss}} - p_T^{\ell\ell}|/p_T^{\ell\ell} < 0.2$
- Jet veto
ZH, $H \rightarrow \text{invisible}: \text{Distributions}$

Reduced E_T^{miss} in signal region

E_T^{miss} in signal region after all cuts

Backgrounds:
- ZZ and WZ from MC
- WW and top from scaling signal free $e\mu$ decay channel distributions
- $Z+\text{jets}$ from $ABCD$ method with $\Delta\phi(E_T^{\text{miss}}, \vec{p_T}^{\text{miss}})$ and frac. p_T diff. (ATLAS) or orthogonal reweighted $\gamma+\text{jets}$ sample (CMS)
- $W+\text{jets/multi-jet}$ from 4×4 matrix method loosened lepton-ID
ZH, H → inv.: Uncertainties, Event yields

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th></th>
<th>$\sqrt{s} = 8$ TeV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ee</td>
<td>$\mu\mu$</td>
<td>ee</td>
<td>$\mu\mu$</td>
</tr>
<tr>
<td>$ZH(125)$</td>
<td>2.2 ± 0.3</td>
<td>3.3 ± 0.5</td>
<td>11.8 ± 1.9</td>
<td>16.7 ± 2.5</td>
</tr>
<tr>
<td>$Z/\gamma^* \rightarrow \ell^+\ell^-$</td>
<td>0.3 ± 0.3</td>
<td>0.7 ± 0.7</td>
<td>1.0 ± 1.0</td>
<td>1.9 ± 1.9</td>
</tr>
<tr>
<td>$WZ \rightarrow 3\ell\nu$</td>
<td>2.0 ± 0.3</td>
<td>2.3 ± 0.3</td>
<td>11.0 ± 1.6</td>
<td>14.8 ± 2.1</td>
</tr>
<tr>
<td>$ZZ \rightarrow 2\ell2\nu$</td>
<td>5.1 ± 0.6</td>
<td>7.3 ± 0.8</td>
<td>29.8 ± 3.6</td>
<td>40.8 ± 4.5</td>
</tr>
<tr>
<td>$Top/WW/W + Jets$</td>
<td>0.4 ± 0.4</td>
<td>0.6 ± 0.6</td>
<td>1.3 ± 0.8</td>
<td>2.1 ± 1.3</td>
</tr>
<tr>
<td>Total bkg.</td>
<td>7.8 ± 0.8</td>
<td>11.0 ± 1.3</td>
<td>43.1 ± 4.1</td>
<td>59.6 ± 5.5</td>
</tr>
</tbody>
</table>

| Data | 10 | 11 | 33 | 45 |

CMS:

Data Period

<table>
<thead>
<tr>
<th>Process</th>
<th>2011 (7 TeV)</th>
<th>2012 (8 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ</td>
<td>23.5 ± 0.8 ± 2.5</td>
<td>56.5 ± 1.2 ± 5.7</td>
</tr>
<tr>
<td>WZ</td>
<td>6.2 ± 0.4 ± 0.7</td>
<td>13.9 ± 1.2 ± 2.1</td>
</tr>
<tr>
<td>WW</td>
<td>1.1 ± 0.2 ± 0.2</td>
<td>used $e\mu$ data-driven</td>
</tr>
<tr>
<td>Top quark</td>
<td>0.4 ± 0.1 ± 0.4</td>
<td>used $e\mu$ data-driven</td>
</tr>
<tr>
<td>Top quark, WW and $Z \rightarrow \tau\tau$ ($e\mu$ data-driven)</td>
<td></td>
<td>used MC</td>
</tr>
<tr>
<td>Z</td>
<td>0.16 ± 0.13 ± 0.09</td>
<td>1.4 ± 0.4 ± 0.7</td>
</tr>
<tr>
<td>W + jets, multijet</td>
<td>1.3 ± 0.3 ± 0.2</td>
<td>1.4 ± 0.4 ± 0.3</td>
</tr>
<tr>
<td>Total BG</td>
<td>32.7 ± 1.0 ± 2.6</td>
<td>78.0 ± 2.0 ± 6.5</td>
</tr>
</tbody>
</table>

Observed

| | 27 | 71 |

ATLAS

Dominant systematic uncertainties:

- ZZ, WZ 10-14 $\%$, ZH Signal 6-7$\%$
ZH, \(H \to \text{invisible} \): Results

Two interpretations:

<table>
<thead>
<tr>
<th>GeV</th>
<th>fb</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
</tbody>
</table>

BR(\(H \to \text{inv} \)) > 71 (91) / 65 (84)%

obs. (exp.) CMS/ATLAS excluded at 95% CL for SM Higgs boson with \(m_H = 125 \text{ GeV} \)

Stringent limits on Higgs and Dark Matter coupling can be obtained in combination with mono-jet and mono-photon and VBF \(H \to \text{inv} \) searches
Motivation:
- $H \rightarrow \mu^+\mu^-$ directly probes SM Higgs Boson couplings to 2nd generation fermions
- $BR(H[125] \rightarrow \mu^+\mu^-) = 2.2 \times 10^{-4}$

Search strategy:
- Inclusive search
- Search for a small bump on top of continuous $m_{\mu\mu}$ background distribution
- „blinded” search of the SM resonance in 110-150 GeV $m_{\mu\mu}$ window
- Use parametrized functions to fit data for background rate and shape
- Dominant background is inclusive Z/γ^* (small di-bosons and $t\bar{t}$)

Challenges:
- Irreducible $Z/\gamma^* \rightarrow \mu\mu$ background
- $\Gamma(H[125]) = 4.1$ MeV - signal width dominated by detector resolution
$H \rightarrow \mu^+ \mu^- : m_{\mu\mu}$ AND EVENT YIELDS

Event selection:
- 2 isolated opp. charged muons, $p_T^{\mu 1(2)} > 25 \ (15) \text{ GeV}$
- $p_T^{\mu\mu} > 15 \text{ GeV}$
- Muon resolution categories: $|\eta_\mu| < 1, |\eta_\mu| > 1$

Event yields:

| Source | $|m_H - m_{\mu\mu}| \leq 5 \text{ GeV}$ |
|-------------------|--|
| Signal [125 GeV] | 37.7 ± 0.2 |
| WW | 250 ± 4 |
| $WZ/ZZ/W\gamma$ | 30 ± 1 |
| $t\bar{t}$ | 1374 ± 13 |
| Single Top | 151 ± 5 |
| Z + jets | 15810 ± 130 |
| W + jets | 88 ± 6 |
| Total BG | 17700 ± 130 |
| Observed | 17442 |
$H \rightarrow \mu^+\mu^-$: **Fit procedure**

Background model:
Breit-Wigner + exponential function

Signal model:
Crystal ball + Gaussian function

Background fit validated in MC and data control regions

ATLAS Preliminary
$\sqrt{s} = 8$ TeV
\[\int L dt = 20.7 \text{ fb}^{-1} \]

![Graph showing di-muon mass distribution](image)

![Graph showing fit model comparison](image)
$H \rightarrow \mu^+ \mu^-$: Results

Limits at $m_H=125$ GeV:
- Observed: $9.5 \cdot \sigma_{SM}$
- Expected: $8.2 \cdot \sigma_{SM}$

Dominant systematic uncertainties (all at percent level):
- Theory: cross section and branching ratio, ISR
- Experimental: Luminosity, muon reconstruction
$H \rightarrow \mu^+\mu^-$: Future perspectives

HL-LHC substantially improved statistical precision for already established channels, allows to study rare Higgs boson production and decay modes ATLAS and CMS with 3000 fb^{-1}:

- Inclusive analysis expected significance $> 6\sigma$ (ATLAS) and $\approx 5\sigma$ for gluon-gluon fusion and VBF (CMS)
- Expected measurement precision better than 20% (ATLAS) or than 10% on $H\mu\mu$ coupling (CMS)
Summary and Conclusions

- Presented the analysis by ATLAS and CMS with LHC data from 2011 and 2012 for rare SM Higgs boson decays in:
 - $H \rightarrow Z\gamma$
 - $H \rightarrow \mu\mu$
 - $ZH, H \rightarrow$ invisible

- No deviations from SM Higgs boson expectations and set upper limits on the various $\sigma \cdot BR$
 - further indication that it is a SM Higgs boson

- Establish signal of rare decay latest with HL-LHC data
Documentation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/

\[H \rightarrow Z\gamma \quad \text{ATLAS-CONF-2013-009} \]
\[H \rightarrow \mu\mu \quad \text{ATLAS-CONF-2013-010} \]
\[ZH \text{ (Invisible decays)} \quad \text{ATLAS-CONF-2013-011} \]

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

HL-LHC physics \quad \text{ATL-PHYS-PUB-2012-004}

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

\[H \rightarrow Z\gamma \quad \text{CMS-PAS-HIG-13-006} \]
\[ZH \text{ (Invisible decays)} \quad \text{CMS-PAS-HIG-13-018} \]

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

HL-LHC physics \quad \text{CMS-NOTE-2012-006}
BACKUP
Background is directly fitted from data mass spectrum

ATLAS: 2D sideband fit method: γ-ID and γ-Isolation in Z+jets enriched region to determine Z+jets and $Z + \gamma$ fraction after $t\bar{t}$ and WZ subtraction

Backgrounds are:
- SM $Z + \gamma$ ($\sim 82\%$)
- SM Z+jets ($\sim 17\%$)
- $t\bar{t}$ and WZ ($\sim 1\%$)
ZH, $H \rightarrow$ invisible: Background determination

- ZZ and WZ from MC
- WW and top from scaling signal free $e\mu$ decay channel distributions
- $Z+\text{jets}$ from $ABCD$ method with $\Delta \phi(E_T^{\text{miss}}, \vec{p}_T^{\text{miss}})$ and frac. p_T diff.
- $W+\text{jets}$ and multi-jet BG from 4×4 matrix method with loosened lepton-ID

\[
\begin{pmatrix}
N_{TT} \\
N_{TL} \\
N_{LT} \\
N_{LL}
\end{pmatrix} =
\begin{pmatrix}
r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\
r_1 (1-r_2) & r_1(1-f_2) & f_1(1-r_2) & f_1(1-f_2) \\
(1-r_1)r_2 & (1-r_1)f_2 & (1-f_1)r_2 & (1-f_1)f_2 \\
(1-r_1)(1-r_2) & (1-r_1)(1-f_2) & (1-f_1)(1-r_2) & (1-f_1)(1-f_2)
\end{pmatrix}
\times
\begin{pmatrix}
N_{RR} \\
N_{RF} \\
N_{FR} \\
N_{FF}
\end{pmatrix}
\]

\[
N_{W+\text{jets}} = \sum_i N_{RF}^i \times r_1^i \times f_2^i + N_{FR}^i \times f_1^i \times r_2^i,
\]
\[
N_{\text{multijet}} = \sum_i N_{FF}^i \times f_1^i \times f_2^i.
\]

r_1, r_2, f_1, f_2 lepton efficiencies and fake rates for first lepton and second lepton
ZH, $H \rightarrow$ invisible: Background determination

- ZZ and WZ from MC (MCFM)
- WW and top from scaling signal free $e\mu$ decay channel distributions
- $Z +$jets from $\gamma +$jets sample reweighted for trigger, pile-up and selection differences

- Define 2 axis i: parallel and orthogonal to di-lepton system
- reduced $E_T^{\text{miss}} = p_T^{\ell\ell} - \min(R_{\text{clust}}^i, R_{\text{uncl}}^i)$
- R_{clust}^i: clustered recoil, R_{uncl}^i: unclustered recoil
CMS:

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Uncertainty(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>PDF</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>QCD scale variation (ZH)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>QCD scale variation (VV)</td>
<td>7-10</td>
</tr>
<tr>
<td></td>
<td>Luminosity</td>
<td>2.2-4.4</td>
</tr>
<tr>
<td></td>
<td>Lepton Trigger, Reco., Isolation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>$Z/\gamma^* \rightarrow \ell^+\ell^-$ normalization</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Top, WW & W + jets normalization</td>
<td>25-100</td>
</tr>
<tr>
<td>Shape</td>
<td>MC statistics: ZH, ZZ, WZ</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>Control sample statistics $Z/\gamma^* \rightarrow \ell^+\ell^-$</td>
<td>12-24</td>
</tr>
<tr>
<td></td>
<td>Control sample statistics NRB</td>
<td>53-100</td>
</tr>
<tr>
<td></td>
<td>Pile Up</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td></td>
<td>b-tagging Efficiency</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Lepton Momentum Scale</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Jet Energy Scale, Resolution</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Unclustered energy</td>
<td>1-4</td>
</tr>
</tbody>
</table>

ATLAS:

<table>
<thead>
<tr>
<th>Process</th>
<th>Estimation method</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZH Signal</td>
<td>MC</td>
<td>7</td>
</tr>
<tr>
<td>ZZ</td>
<td>MC</td>
<td>11</td>
</tr>
<tr>
<td>WZ</td>
<td>MC</td>
<td>12</td>
</tr>
<tr>
<td>WW</td>
<td>MC</td>
<td>14</td>
</tr>
<tr>
<td>Top quark</td>
<td>MC</td>
<td>90</td>
</tr>
<tr>
<td>Top quark, WW and Z → ττ</td>
<td>$e\mu$ CR</td>
<td>not used</td>
</tr>
<tr>
<td>Z</td>
<td>ABCD method</td>
<td>56</td>
</tr>
<tr>
<td>$W +$ jets, multijet</td>
<td>Matrix method</td>
<td>15</td>
</tr>
</tbody>
</table>