PROBING EWSB AND FUTURE HIGGS PHYSICS

Roberto Contino
Università di Roma La Sapienza \& INFN Roma

EPSHEP 2013 Stockholm, Sweden, 18-24 July, 2013

Strong vs Weak EWSB

In the $\{\mathrm{SM}-\mathrm{H}\}$

$$
A\left(W_{L} W_{L} \rightarrow W_{L} W_{L}\right)=A(\chi \chi \rightarrow \chi \chi) \sim \frac{E^{2}}{v^{2}} \equiv g^{2}(E)
$$

In the $\{S M-H\}+H$

$$
A \sim \frac{E^{2}}{v^{2}}\left(1-a^{2}\right)-a^{2} \frac{m_{h}^{2}}{v^{2}} \frac{s}{s-m_{h}^{2}}
$$

In the $\{\mathrm{SM}-\mathrm{H}\}$

$$
A\left(W_{L} W_{L} \rightarrow W_{L} W_{L}\right)=A(\chi \chi \rightarrow \chi \chi) \sim \frac{E^{2}}{v^{2}} \equiv g^{2}(E)
$$

In the $\{S M-H\}+H$

$$
\begin{gathered}
A \sim \frac{E^{2}}{v^{2}}\left(1-a^{2}\right)-a^{2} \frac{m_{h}^{2}}{v^{2}} \frac{s}{s-m_{h}^{2}} \\
\\
=0
\end{gathered}
$$

Elementary Higgs:

$$
a=1
$$

Composite Higgs:

coupling strength grows with energy and saturates at $g_{*} \lesssim 4 \pi$

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$
Q: why light and narrow?

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson [Georgi \& Kaplan, '80]
ex: $\frac{S O(5)}{S O(4)} \rightarrow \quad 4$ NGBs transforming as a $(2,2)$ of $\mathrm{SO}(4) \quad \underset{\text { [Agashe, RC, Pomarol }}{\text { NPB } 719(2005) 165]}$

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=(\partial \pi)^{2}+\frac{(\pi \partial \pi)^{2}}{f^{2}}+\frac{\pi^{2}(\pi \partial \pi)^{2}}{f^{4}}+\ldots
$$

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson [Georgi \& Kaplan, '80]
ex: $\frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \quad \begin{gathered}\text { [Agashe, RC, Pomarol } \\ \text { NPB } 719(2005) 165]\end{gathered}$

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

[Giudice et al. JHEP 0706 (2007) 045]

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson [Georgi \& Kaplan, '80]
ex: $\frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \quad \begin{gathered}\text { [Agashe, RC, Pomarol } \\ \text { NPB } 719(2005) 165]\end{gathered}$

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

[Giudice et al. JHEP 0706 (2007) 045]

1. $O\left(v^{2} / f^{2}\right)$ shifts in tree-level Higgs couplings. Ex: $\quad a=1-c_{H}\left(\frac{v}{f}\right)^{2}+\ldots$

Analogy with $\pi \pi$ scattering in QCD: $\quad h \leftrightarrow \sigma$

Q: why light and narrow?

A: the Higgs is itself a (pseudo) NG boson [Georgi \& Kaplan, '80]
ex: $\frac{S O(5)}{S O(4)} \rightarrow \quad 4 \mathrm{NGBs} \quad$ transforming as a $(2,2)$ of $\mathrm{SO}(4) \quad \begin{gathered}\text { [Agashe, RC, Pomarol } \\ \text { NPB } 719(2005) 165]\end{gathered}$

$$
f^{2}\left|\partial_{\mu} e^{i \pi / f}\right|^{2}=\left|D_{\mu} H\right|^{2}+\frac{c_{H}}{2 f^{2}}\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\frac{c_{H}^{\prime}}{2 f^{4}}\left(H^{\dagger} H\right)\left[\partial_{\mu}\left(H^{\dagger} H\right)\right]^{2}+\ldots
$$

[Giudice et al. JHEP 0706 (2007) 045]
2. Scatterings involving the Higgs also grow with energy

$$
A(W W \rightarrow h h) \sim \frac{s}{v^{2}}\left(a^{2}-b\right)
$$

How to test Higgs compositeness

1. Direct: Reach energy threshold for direct production of new resonances
2. Indirect: Precision measurement of low-energy quantities

How to test Higgs compositeness

1. Direct: Reach energy threshold for direct production of new resonances
2. Indirect: Precision measurement of low-energy quantities
i) virtual corrections to single-Higgs processes

How to test Higgs compositeness

1. Direct: Reach energy threshold for direct production of new resonances
2. Indirect: Precision measurement of low-energy quantities
i) virtual corrections to single-Higgs processes

ii) tails in scattering amplitudes

Corrections to Higgs couplings

Precision measurement of Higgs couplings can give an appraisal of the strength of the underlying interactions

$$
\frac{\delta \mathcal{O}}{\mathcal{O}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
$$

Precision measurement of Higgs couplings can give an appraisal of the strength of the underlying interactions

from NL sigma model
strong scale

Precision measurement of Higgs couplings can give an appraisal of the strength of the underlying interactions

contribution of resonances

from NL sigma model

Precision measurement of Higgs couplings can give an appraisal of the strength of the underlying interactions

contribution of resonances

from NL sigma model

Suppose we find:

$$
\begin{aligned}
& \left.\frac{\delta \mathcal{O}}{\mathcal{O}}\right|_{\exp }=\delta_{\mathcal{O}}^{e x p} \\
& m_{*}>M \\
& \text { (from direct searches) }
\end{aligned}
$$

$$
g_{*}>\sqrt{\delta_{\mathcal{O}}^{e x p}} \frac{M}{v}
$$

In practice resonance contribution
is further suppressed:

$$
\frac{\delta c}{c_{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}} \times \frac{g_{\notin}^{2}}{g_{*}^{2}}
$$

In practice resonance contribution is further suppressed:

$$
\frac{\delta c}{c_{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}} \times \frac{g_{Q_{*}^{4}}^{2}}{g_{*}^{2}}
$$

tree-level coupling to vector bosons

renormalization of NGB kinetic term requires breaking of Goldstone symmetry

In practice resonance contribution is further suppressed:

$$
\frac{\delta c}{c_{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}} \times \frac{g_{G}^{2}}{g_{*}^{2}}
$$

tree-level coupling to vector bosons

renormalization of NGB kinetic term requires breaking of Goldstone symmetry

loop-induced $h \rightarrow \gamma \gamma, g g$

$$
B_{\mu \nu}^{2} H^{\dagger} H
$$

$G_{\mu \nu}^{2} H^{\dagger} H$

Effective operators violate the Higgs shift symmetry:

$$
H^{i} \rightarrow H^{i}+\zeta^{i}
$$

In practice resonance contribution is further suppressed:

$$
\frac{\delta c}{c_{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}} \times \frac{g_{G}^{2}}{g_{*}^{2}}
$$

renormalization of NGB kinetic term requires breaking of Goldstone symmetry

tree-level coupling to fermions

resonance corrections arise only from wavefunction renormalization in simplest models with partial compositeness

Effective operators violate the Higgs shift symmetry:

$$
H^{i} \rightarrow H^{i}+\zeta^{i}
$$

Sum Rule for $h \rightarrow \gamma \gamma, g g$

relies on:

> Low Energy Theorem $$
\left.A(g g \rightarrow h) \propto \frac{\partial}{\partial h} \log \operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right]\right|_{h=v}
$$

Partial compositeness
$\operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right] \propto \lambda_{L}(h) \lambda_{R}(h)$

$$
A_{S M} \times c_{t} \quad \delta A=\frac{g_{s}^{2}}{16 \pi^{2}} \times O\left(\frac{\lambda^{2} v^{2}}{m_{*}^{2}}\right)
$$

Sum Rule for $\mathrm{h} \rightarrow \gamma \gamma, \mathrm{gg}$

relies on:
Low Energy Theorem
$\left.A(g g \rightarrow h) \propto \frac{\partial}{\partial h} \log \operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right]\right|_{h=v}$

Partial compositeness
$\operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right] \propto \lambda_{L}(h) \lambda_{R}(h)$

$$
A_{S M} \times c_{t} \quad \delta A=\frac{g_{s}^{2}}{16 \pi^{2}} \times O\left(\frac{\lambda^{2} v^{2}}{m_{*}^{2}}\right)
$$

$c_{t}=F(\xi)+O\left(\frac{\lambda^{2} v^{2}}{M^{2}}\right)$
from Higgs nlom

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

from correction to
wave-functions

Sum Rule for $\mathrm{h} \rightarrow \gamma \gamma, \mathrm{gg}$

relies on:
Low Energy Theorem
$\left.A(g g \rightarrow h) \propto \frac{\partial}{\partial h} \log \operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right]\right|_{h=v}$

Partial compositeness
$\operatorname{det}\left[\mathcal{M}^{\dagger}(h) \mathcal{M}(h)\right] \propto \lambda_{L}(h) \lambda_{R}(h)$

$$
A_{S M} \times c_{t}
$$

$$
\delta A=\frac{g_{s}^{2}}{16 \pi^{2}} \times O\left(\frac{\lambda^{2} v^{2}}{m_{*}^{2}}\right)
$$

$$
c_{t}=F(\xi)+O\left(\frac{\lambda^{2} v^{2}}{M^{2}}\right)
$$

from Higgs nlom

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

from correction to wave-functions

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

$$
\frac{\delta c_{Z \gamma}}{c_{Z \gamma}^{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
$$

Relevant operator is $\quad O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

$$
\frac{\delta c_{Z \gamma}}{c_{Z \gamma}^{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
$$

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

$$
\frac{\delta c_{Z \gamma}}{c_{Z \gamma}^{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
$$

Relevant operator is $\quad O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

$$
\frac{\delta A}{A_{S M}} \sim N_{c} N_{F}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}
$$

$$
\left.\begin{array}{l}
\text { shift of tree-level } \\
\begin{array}{l}
\text { Higgs couplings } \\
\text { from nlom }
\end{array} \\
\hline f^{2}
\end{array}\right)
$$

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

$$
\frac{\delta c_{Z \gamma}}{c_{Z \gamma}^{S M}} \sim \frac{v^{2}}{f^{2}}+\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}
$$

Relevant operator is $\quad O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR

$$
A(h \rightarrow Z \gamma)=A_{S M} \times F(\xi)+\delta A
$$

shift of tree-level
$\begin{array}{c}\text { Higgs couplings } \\ \text { from nlom }\end{array}$

$\frac{\delta A}{A_{S M}} \sim N_{c} N_{F}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}$
multiplicity of composite states

Only exception is: $h \rightarrow Z \gamma$
[Azatov, RC , Di lura, Galloway, work in progress]

Relevant operator is $O_{H W}-O_{H B}$
$O_{H B}=\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}$
$O_{H W}=\left(D^{\mu} H\right)^{\dagger} \sigma^{i}\left(D^{\nu} H\right) W_{\mu \nu}^{i}$

1. Invariant under Higgs shift symmetry
2. Odd under LR exchange

Strong dynamics MUST break LR
$A(h \rightarrow Z \gamma)=A_{S M} \times \underbrace{F(\xi)}+\delta A$
$\left.\begin{array}{l}\text { shift of tree-level } \\ \begin{array}{l}\text { Higgs couplings } \\ \text { from nlom }\end{array} \\ \hline f^{2}\end{array}\right)$
$\frac{\delta A}{A_{S M}} \sim \underbrace{}_{\downarrow} N_{c}\left(\frac{g_{*}^{2} v^{2}}{m_{*}^{2}}\right) \sim N_{c} N_{F} \frac{v^{2}}{f^{2}} \frac{\Delta m_{*}^{2}}{m_{*}^{2}}$
multiplicity of composite states

Tails in scattering amplitudes
strong scale
Precision measurement of scattering amplitudes can give an appraisal of the strength of the underlying interactions

$$
\mathcal{A}(2 \rightarrow 2)=\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+O\left(\frac{E^{2}}{m_{*}^{2}}\right)\right)
$$

strong scale
Precision measurement of scattering amplitudes can give an appraisal of the strength of the underlying interactions

$$
\begin{aligned}
\mathcal{A}(2 \rightarrow 2) & =\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+O\left(\frac{E^{2}}{m_{*}^{2}}\right)\right) \\
& \equiv g^{2}(E)
\end{aligned}
$$

strong scale
Precision measurement of scattering amplitudes can give an appraisal of the strength of the underlying interactions

$$
\begin{aligned}
\mathcal{A}(2 \rightarrow 2) & =\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+O\left(\frac{E^{2}}{m_{*}^{2}}\right)\right) \quad \delta_{h h}^{e x p} \neq 0 \\
& \equiv g^{2}(E)
\end{aligned}
$$

Suppose we find:

$g_{*}>g(E)=\sqrt{\delta_{h h}^{e x p}} \frac{E}{v}$
strong scale
Precision measurement of scattering amplitudes can give an appraisal of the strength of the underlying interactions

$\begin{aligned} & \text { Suppose we } \\ & \text { can bound }\end{aligned} \frac{E^{2}}{m_{*}^{2}}<\epsilon_{h h}$ hence $m_{*}>\frac{E}{\sqrt{\epsilon_{h h}}} \equiv M$

$$
\left.\mathcal{A}(2 \rightarrow 2)=\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+O\left(\frac{E^{2}}{m_{*}^{2}}\right)\right)\right) \quad \delta_{h h}^{e x p} \neq 0
$$

$$
g_{*}>g(E)=\sqrt{\delta_{h h}^{e x p}} \frac{E}{v}
$$

strong scale
Precision measurement of scattering amplitudes can give an appraisal of the strength of the underlying interactions
$\begin{aligned} & \text { Suppose we } \\ & \text { can bound }\end{aligned} \frac{E^{2}}{m_{*}^{2}}<\epsilon_{h h}$ hence $m_{*}>\frac{E}{\sqrt{\epsilon_{h h}}} \equiv M$

$$
R=\frac{\sigma(p p \rightarrow h h j j)}{\left.\sigma(p p \rightarrow h h j j)\right|_{L E T}}
$$

$\mathcal{L}=\frac{a_{\eta}}{2 f} \eta\left(\partial_{\mu} \pi\right)^{2}+\ldots$
[RC, Marzocca, Pappadopulo, Rattazzi, JHEP 1110 (2011) 081]
$\left.\mathcal{A}(2 \rightarrow 2)=\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+\left(\frac{E^{2}}{m_{*}^{2}}\right)\right)\right)$
measurement of resonance effects gives direct access to strong dynamics

$$
\left.\mathcal{A}(2 \rightarrow 2)=\delta_{h h} \frac{E^{2}}{v^{2}}\left(1+O\left(\frac{E^{2}}{m_{*}^{2}}\right)\right)\right)
$$

measurement of resonance effects gives direct access to strong dynamics

$$
R=\frac{\sigma(p p \rightarrow h h j j)}{\left.\sigma(p p \rightarrow h h j j)\right|_{L E T}}
$$

$$
\mathcal{L}=\frac{a_{\eta}}{2 f} \eta\left(\partial_{\mu} \pi\right)^{2}+\ldots
$$

[RC, Marzocca, Pappadopulo, Rattazzi, JHEP 1110 (2011) 081]

LHC 14 TeV

A high-energy $\mathrm{e}^{+} \mathrm{e}^{-}$collider (such as CLIC 3 TeV) can provide a clean environment to make precision studies of scattering amplitudes

Example: $\quad W W \rightarrow h h$
$A(W W \rightarrow h h) \sim \frac{s}{v^{2}}\left(a^{2}-b\right)$

$\operatorname{dim} 6: \quad O_{H}=\frac{c_{H}}{2 f^{2}} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2}$

$$
a=1-\frac{c_{H}}{2} \frac{v^{2}}{f^{2}}+\left(\frac{3 c_{H}^{2}}{8}-\frac{c_{H}^{\prime}}{4}\right) \frac{v^{4}}{f^{4}}
$$

$\operatorname{dim} 8: \quad O_{H}^{\prime}=\frac{c_{H}^{\prime}}{2 f^{4}}|H|^{2} \partial_{\mu}|H|^{2} \partial^{\mu}|H|^{2}$

$$
b=1-2 c_{H} \frac{v^{2}}{f^{2}}+\left(3 c_{H}^{2}-\frac{3 c_{H}^{\prime}}{2}\right) \frac{v^{4}}{f^{4}}
$$

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{aligned}
& a=\sqrt{1-\xi} \\
& b=1-2 \xi
\end{aligned}
$$

$$
\text { At dimension-6 level: } \quad \Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right) \quad \begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 1:

$\Delta a^{2} \sim \Delta b \sim 10 \%$
Exp. precision $\sim 1 \%$

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 1:

$\Delta a^{2} \sim \Delta b \sim 10 \%$
Exp. precision $\sim 1 \%$

1. PNGB (and specific coset) proved

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 1:

$\Delta a^{2} \sim \Delta b \sim 10 \%$
Exp. precision $\sim 1 \%$

1. PNGB (and specific coset) proved
2. SILH proved, PNGB disproved

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 2:

$\Delta a^{2} \sim \Delta b \sim 1 \%$
Exp. precision $\sim 1 \%$

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 2:

$\Delta a^{2} \sim \Delta b \sim 1 \%$
Exp. precision $\sim 1 \%$

1. SILH proved

In PNGB Higgs theories the whole series in H / f can be resummed:

$$
\begin{array}{ll}
a=\sqrt{1-\xi} & \xi=\frac{v^{2}}{f^{2}} \\
b=1-2 \xi &
\end{array}
$$

At dimension-6 level:

$$
\Delta b=2 \Delta a^{2}\left(1+O\left(\Delta a^{2}\right)\right)
$$

$$
\begin{aligned}
\Delta b & \equiv 1-b \\
\Delta a^{2} & \equiv 1-a^{2}
\end{aligned}
$$

Scenario 2:

$\Delta a^{2} \sim \Delta b \sim 1 \%$
Exp. precision $\sim 1 \%$

1. SILH proved
2. SILH (i.e. Higgs doublet) disproved

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=3 \mathrm{TeV}$ can reach a precision of a few \% on the coupling b through

Barger et al. PRD 67 (2003) 115001
RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear the process $e^{+} e^{-} \rightarrow \nu \bar{\nu} h h \rightarrow \nu \bar{\nu} b \bar{b} b \bar{b}$

Expected precision on δ_{b} with $L=1 \mathrm{ab}^{-1} / a^{4}$

$\begin{gathered} \text { measured } \\ \delta_{b} \\ \hline \end{gathered}$	-0.5	-0.3	-0.1	$\begin{array}{cc}\bar{\delta}_{d_{3}} & \\ & 0\end{array}$	0.1	0.3	0.5
0	$-0.01_{-0.09}^{+0.03}$	$0.01_{-0.10}^{+0.03}$	$0.01_{-0.04}^{+0.03}$	$0.01_{-0.04}^{+0.04}$	$0.01_{-0.04}^{+0.04}$	$0.0_{-0.03}^{+0.03}$	$0.0_{-0.03}^{+0.02}$
0.01	$0.01_{-0.10}^{+0.03}$	$0.02_{-0.04}^{+0.03}$	$0.02_{-0.04}^{+0.03}$	$0.02_{-0.04}^{+0.04}$	$0.02_{-0.03}^{+0.04}$	$0.01_{-0.03}^{+0.03}$	$0.01_{-0.03}^{+0.02}$
$\bar{\delta} \quad 0.02$	$0.02_{-0.04}^{+0.03}$	$0.03_{-0.04}^{+0.03}$	$0.03_{-0.04}^{+0.04}$	$0.03_{-0.03}^{+0.05}$	$0.02_{-0.03}^{+0.05}$	$0.02_{-0.03}^{+0.02}$	$0.02_{-0.03}^{+0.02}$
$\bar{\delta}_{b} \quad 0.03$	$0.03_{-0.04}^{+0.02}$	$0.04_{-0.03}^{+0.03}$	$0.04_{-0.03}^{+0.04}$	$0.04_{-0.03}^{+0.05}$	$0.03_{-0.03}^{+0.06}$	$0.03_{-0.03}^{+0.08}$	$0.03_{-0.03}^{+0.02}$
0.05	$0.05_{-0.03}^{+0.02}$	$0.06_{-0.03}^{+0.03}$	$0.07_{-0.03}^{+0.05}$	$0.06_{-0.03}^{+0.06}$	$0.05_{-0.03}^{+0.03}$	$0.05_{-0.02}^{+0.09}$	$0.05_{-0.02}^{+0.10}$
0.1	$0.11_{-0.03}^{+0.02}$	$0.13_{-0.04}^{+0.03}$	$0.11_{-0.02}^{+0.07}$	$0.1_{-0.02}^{+0.03}$	$0.1_{-0.02}^{+0.06}$	$0.1_{-0.02}^{+0.02}$	$0.1_{-0.02}^{+0.02}$
0.3	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$	$0.3_{-0.02}^{+0.02}$
0.5	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$	$0.5_{-0.02}^{+0.02}$

$$
\begin{aligned}
& \delta_{b}=1-b / a^{2} \\
& \delta_{d_{3}}=1-d_{3} / a
\end{aligned}
$$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=3 \mathrm{TeV}$ can reach a precision of a few \% on the coupling b through

Barger et al. PRD 67 (2003) 115001
RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear the process $e^{+} e^{-} \rightarrow \nu \bar{\nu} h h \rightarrow \nu \bar{\nu} b \bar{b} b \bar{b}$

Expected precision on δ_{b} with $L=1 \mathrm{ab}^{-1} / a^{4}$

$$
\begin{aligned}
& \delta_{b}=1-b / a^{2} \\
& \delta_{d_{3}}=1-d_{3} / a
\end{aligned}
$$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear

$+$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear

$+$

Cut on $m_{h h}$ useful at $\sqrt{s}=1 \mathrm{TeV}$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear
$\delta \mathrm{d}_{3}=0$

Cut on $m_{h h}$ useful at $\sqrt{s}=1 \mathrm{TeV}$

$+$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear
$\delta \mathrm{d}_{3}=0$

Cut on $m_{h h}$ useful at $\sqrt{s}=1 \mathrm{TeV}$

$+$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear
$\delta \mathrm{d}_{3}=0$

Cut on $m_{h h}$ useful at $\sqrt{s}=1 \mathrm{TeV}$

$+$

An $\mathrm{e}^{+} \mathrm{e}^{-}$collider with $\sqrt{s}=500 \mathrm{GeV}-1 \mathrm{TeV}$ can reach a precision of $\sim 20 \%$ on b through the double Higgsstrahlung process

RC , Grojean, Pappadopulo, Rattazzi, Thamm, to appear

Cut on $m_{h h}$ useful at $\sqrt{s}=1 \mathrm{TeV}$

$+$

Conclusions

Conclusions

- Tests of Higgs compositeness (i.e. strong EWSB) can be done by precisely measuring low-energy quantities

Conclusions

- Tests of Higgs compositeness (i.e. strong EWSB) can be done by precisely measuring low-energy quantities
- Higgs couplings:
only $h \rightarrow Z \gamma$ (but not $h \rightarrow \gamma \gamma$, gg) can give direct information of spectrum of heavy resonances: large effects possible

Conclusions

- Tests of Higgs compositeness (i.e. strong EWSB) can be done by precisely measuring low-energy quantities
- Higgs couplings:
only $h \rightarrow Z \gamma$ (but not $h \rightarrow \gamma \gamma, g g$) can give direct information of spectrum of heavy resonances: large effects possible
- From VV \rightarrow hh:
- coupling hhVV at few \% ($\mathrm{e}^{+} \mathrm{e}^{-}$with $\sqrt{s}=3 \mathrm{TeV}$)
- tests of Higgs effective Lagrangian at dim-8 level: PNBG vs SILH

Conclusions

- Tests of Higgs compositeness (i.e. strong EWSB) can be done by precisely measuring low-energy quantities
- Higgs couplings:
only $h \rightarrow Z \gamma$ (but not $h \rightarrow \gamma \gamma, g g$) can give direct information of spectrum of heavy resonances: large effects possible
- From VV \rightarrow hh:
- coupling hhVV at few \% ($\mathrm{e}^{+} \mathrm{e}^{-}$with $\sqrt{s}=3 \mathrm{TeV}$)
- tests of Higgs effective Lagrangian at dim-8 level: PNBG vs SILH
- From double Higgsstrahlung:
- coupling hhVV at $\sim 20 \%$ ($\mathrm{e}^{+} \mathrm{e}^{-}$with $\sqrt{s}=500 \mathrm{GeV}+1 \mathrm{TeV}$)

