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Strong vs Weak EWSB
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Elementary Higgs: weak
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+Composite Higgs: +

W,Z, h

m∗g∗≡g(m∗)

ΛSg(ΛS) = 4π strong scale

Energy cartoon:

coupling strength grows with energy and saturates at  
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5

Q:  why light and narrow ?
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Q:  why light and narrow ?

A:  the Higgs is itself a (pseudo) NG boson

ex:

[ Georgi & Kaplan, ’80 ]

4 NGBs     transforming as a (2,2) of SO(4) [ Agashe, RC, Pomarol 
  NPB 719 (2005) 165 ]
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1.                  shifts in tree-level Higgs couplings.     Ex:

[ Giudice et al.  JHEP 0706 (2007) 045  ]
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2.   Scatterings involving the Higgs also grow with energy
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1.   Direct: Reach energy threshold for direct production of new resonances

2.   Indirect: Precision measurement of low-energy quantities
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the underlying interactions
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contribution of resonances
Suppose we find:
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function renormalization in simplest models 
with partial compositeness 
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Only exception is: h → Zγ
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OHW −OHBRelevant operator is

1.  Invariant under Higgs shift symmetry

2.  Odd under LR exchange
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Only exception is: h → Zγ

[ Azatov, RC , Di Iura, Galloway,  work in progress]
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Tails in scattering amplitudes
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Precision measurement of scattering amplitudes 
can give an appraisal of the strength of the 
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measurement of resonance effects 
gives direct access to strong dynamics
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A high-energy e+e- collider 
(such as CLIC 3TeV) can 

provide a clean environment to 
make precision studies of 

scattering amplitudes

Example:

[  RC , Grojean, Pappadopulo, 
   Rattazzi, Thamm,  to appear  ]
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In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)
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In PNGB Higgs theories the whole 
series in H/f can be resummed:

Ex:  SO(5)/SO(4)

At dimension-6 level:

Scenario 2:

1.  SILH proved

2.  SILH (i.e. Higgs doublet) disproved
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An e+e- collider with                   can reach a 
precision of a few % on the coupling     through
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Table 5: Expected precision on the measured value of δb as a function of the true values δ̄b and
δ̄d3 at CLIC with

√
s = 3TeV and L = 1ab−1

/a
4. The sensitivities are calculated following the

procedure described in the text.

data: ∆i =

�
σi(δ̄d, δ̄d3)/L. The sensitivity on δb (δd3) is obtained by marginalizing L(δb, δd3)

over δd3 (δb) and using the resulting single-parameter likelihood to find the 68% C.L. interval

on δb (δd3).
13

The results for a 3TeV linear collider with L = 1ab
−1/a4 are shown in

Tables 5 and 6.
14

Alternatively, by assuming the parameters a, b and d3 to be related as in eqs. (13) and (14)

for the SO(5)/SO(4) model MCHM4, one can optimize the analysis to extract ξ. We do

so by applying on the dataset, besides the identification cuts of eqs. (31) and (33), a single

cut to isolate the energy growing behavior, since we need to fit a single parameter. We thus

select those events for which HT > 400GeV. The corresponding efficiencies are reported

in Table 7. Larger values of ξ give larger efficiencies for the identification cuts, as mainly

due to the stronger boost of the Higgses, as previously discussed. In order to estimate the

sensitivity on ξ that can be reached at CLIC, for any given true value ξ̄ we construct the

likelihood function

L = exp(−χ2/2) , χ2
(ξ) =

(σ>(ξ)− σ>(ξ̄))2

∆2
, (50)

13In the limit of large statistics one can expand the χ2 in eq. (48) at quadratic order around its minimum
and use the simple formulas which hold for gaussian variables

∆δb =

�
2H22

detH
, ∆δd3 =

�
2H11

detH
, (49)

where H is the hessian matrix of χ2 evaluated at its minimum. We do not make this approximation as it
does not apply for small values of δb with our choice of L.

14Notice that for small δb and large and negative δd3 , the central value of the measured parameter some-
times does not coincide with the true value. This is because in this limit, for our choice of integrated
luminosity, the 2D likelihood can be largely non-gaussian and its marginalization over one parameter can
lead to a shift of the central value of the second one.
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   heavy resonances: large effects possible

 From VV→hh:
   - coupling hhVV at few % (e+e- with                )
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