

Review of LHCb heavy-quark and quarkonia results

Zhenwei YANG Tsinghua University, Beijing

on behalf of the LHCb collaboration

20 July, 2013

HEP 2013 Stockholm 18-24 July 2013

Outline

The LHCb detector and data taking

 $> J/\psi$ and Υ (nS) productions at $\sqrt{s} = 8$ TeV

 $\succ \chi_{cI}$ production using converted photons at $\sqrt{s} = 7$ TeV

 $Figure J/\psi$ polarisation at $\sqrt{s} = 7$ TeV

 \succ Other results

Summary and prospects

Dedicated to beauty and charm physics

Pseudorapidity acceptance $2 < \eta < 5$

LHCb data taking

Most results based on 2011 data at 7 TeV

Motivation

- Measurements of heavy-quark and quarkonia provide powerful tests on QCD models
- > Current models (NRQCD, CSM, COM, $k_{\rm T}$ factorization, et al) can not describe all experimental measurements
 - ✓ production of prompt J/ψ , ψ (2S), Y, χ_c , and
 - ✓ their polarisations
- LHCb can provide essential and unique contributions

J/ψ and Υ (nS) productions at $\sqrt{s} = 8 \text{ TeV}$ [JHEP 06 (2013) 064; arXiv:1302.5578]

J/ψ production measurement

 $> J/\psi$ cross-section measured at $\sqrt{s} = 8$ TeV

[Previous measurements at 7 TeV and 2.76 TeV: EPJC71 (2011) 1645; JHEP 02 (2013) 041]

• High efficiency for dimuon trigger; excellent muon identification; excellent J/ψ mass resolution: 14 MeV/ c^2 (28-40 MeV/ c^2 at CMS)

Candidates / (5 MeV/c²) (a) 12000 (a) 12000 (b) 12000 $\frac{d^2\sigma(J/\psi)}{dp_T\frac{dy}{\eth}} [nb/(GeV/c)]$ 10⁵ LHCb LHCb prompt J/w. 2.0 LHCb $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ Direct NLO CSM, 2.0 10^{4} $2.5 \le v \le 3.0$ 3<p_<4 GeV/c 10 5000 Prompt 3050 3100 0 m($\mu^{+}\mu^{-}$) [MeV/ c^{2}] p_{π} [GeV/c] $p_{\rm T}$ [GeV/c] (0.2 ps) $\frac{\mathrm{d}\,\sigma(\mathrm{J}/\psi)}{\mathrm{d}\,p_{\mathrm{T}}}\,[\mathrm{nb}/(\mathrm{GeV/c}]$ LHCb LHCb J/ ψ from b, 2.0 < y < 4.5, p_{w} < 14 GeV/c 10^{3} Data $\sqrt{s} = 8 \text{ TeV}$ ► LHCb J/ψ from h 2.0 ≤ y ≤ 4.5 FONLL, 2.0 < y < 4.5, p_± < 14 GeV/e FONLL, $2.0 \le y \le 4.5$ 2.5 < y < 3.0Candidates / J/w from h $3 < p_{\sim} < 4 \text{ GeV}/c$ Prompt J/u Wrong P $/\psi$ from b $1/\psi$ from b $\sqrt{s} = 8 \text{ TeV}$ -4 -2 0 2 4 -6 10 t, [ps] $p_{\rm T} [{\rm GeV}/\tilde{c}]$ √s [TeV]

About 2.6 M signals in $p_{\rm T} < 14~{\rm GeV}/c$ and 2.0 < y < 4.5

NLO CSM: PRL98(2007)252002 NLO NRQCD: PRD84(2011)051501 PRL106(2011)022003 NNLO* CSM: EPJC61(2008)693

- Prompt J/ψ : in good agreement with NLO NRQCD
- J/ψ from b : in good agreement with FONLL
- Integrated cross-sections at different energies well agree with theory

$\gamma(nS)$ production measurement

JHEP 06 (2013) 064

Assuming Υ unpolarised

• Better agreement for $\Upsilon(3S)$ (less affected by feed-down) NNLO* CSM: PRL101(2008)152001

8

χ_{c0}, χ_{c1} and χ_{c2} production ratio using converted photons [LHCb-PAPER-2013-028; arXiv:1307.4285]

$\chi_{cJ}(1P)$ production ratio

arXiv:1307.4285 LHCb-PAPER-2013-028

- Previous measurements using unconverted photons
 - χ_{c1} and χ_{c2} not well separated
- $rac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})}$ measured as a function of $p_{\rm T}$ at $\sqrt{s} = 7 {
 m TeV}$
- $\succ \chi_{cI} \rightarrow J/\psi\gamma$ channel used, with γ converted
 - into e^+e^- in the detector
 - First measurement using converted γ in LHCb
 [LHCb-CONF-2011-062]
 - good resolution but low efficiency
 - χ_{c1} and χ_{c2} well separated

Motivation and strategy

- > NLO NRQCD describes J/ψ (Y) production very well, but not for polarisation
- Large uncertainty of cross-section measurement due to unknown polarisation
- ► Full angular analysis to determine polarisation parameters $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi})$ $\frac{d^2 N}{d\cos\theta d\phi} \propto 1 + \lambda_{\theta} \cos^2\theta + \lambda_{\varphi} \sin^2\theta \cos^2 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos\varphi$
- Weighted logarithm likelihood

$$\log L = \alpha \sum_{i=1}^{N_{\text{tot}}} \omega_i \times \log \left[\frac{P(\cos\theta_i, \varphi_i | \lambda_\theta, \lambda_\varphi, \lambda_{\theta\varphi}) \times \varepsilon(\cos\theta_i, \varphi_i)}{\operatorname{Norm}(\lambda_\theta, \lambda_\varphi, \lambda_{\theta\varphi})} \right]$$

- ✓ ε(cosθ_i, $φ_i$): estimated from MC and corrected with $B^+ → J/ψ K^+$ sample
- ✓ Norm $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi})$: normalization of numerator
- ✓ ω_i : sWeight from sPlot technique
- ✓ $\alpha = \sum_{i=1}^{N_{\text{tot}}} \omega_i / \sum_{i=1}^{N_{\text{tot}}} \omega_i^2$: constant factor to correctly account for statistical uncertainties
- > Data sample: 0.37 fb^{-1} at 7 TeV

J/ψ polarisation: results

- \succ ($\lambda_{\theta}, \lambda_{\theta\varphi}, \lambda_{\varphi}$) measured in ($p_{\rm T}, y$) bins in different frame Polarisation measured to be small
- \succ The only J/ψ polarisation measurements for prompt J/ψ in pp collisions at 7 TeV

J/ψ polarisation: comparisons

- > Measured λ_{θ} agrees with neither theoretical prediction
- Agree with ALICE's result with large uncertainty in ALICE

J/ψ cross-section at 7 TeV updated

- Polarisation affects the efficiencies in cross-section measurements
- \succ J/ ψ cross-section measurement updated by taking into account polarisation

 σ (prompt J/ψ ; $p_{\rm T}$ < 14 GeV/c, 2.0 < y < 4.5) = 9.46 ± 0.04 ± 0.53^{+0.86}_{-1.10} µb Previous measurement for comparison

 σ (prompt J/ψ ; $p_{\rm T} < 14 \text{ GeV}/c$, 2.0 < y < 4.5) = $10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20} \,\mu b$

Other results

Earlier heavy quarkonia results

Agree with theoretical prediction within uncertainty PRD84 (2011) 094023; arXiv:1101.5881

B_c measurements at LHCb

see Niels Tuning's talk On Thursday morning

- Before LHCb, only two decay modes observed
- LHCb provided six new decay channels

(selected) Highlight of recent *b*-hadron results

Summary and prospects

- > LHCb presented prosperous measurements of heavy-quark and quarkonia
- \succ Cross-sections of J/ψ and Υ measured at various energy
- $\succ \chi_{cJ}$ production ratio using converted/unconverted photons
 - First evidence of χ_{c0} at hadron collider
- \succ J/ ψ polarisation measurement at 7 TeV
- > Excellent B_c studies in LHCb
 - Six new decay channels including $B_c^+ \rightarrow B_s^0 \pi^+$ (weakly $B \rightarrow B$ decay)
 - Precise B_c mass/production measurements
- Exciting results of *b*-hadrons
 - Precise *B* cross-section measurements
 - Precise Λ_b^0 lifetime measurement
- More analyses in progress with 2011+2012 data sets
- Important contribution to heavy-ion physics
 - Cold Nuclear Matter effects on J/ψ production in *p*Pb collisions presented, and more analysis ongoing

see Fanfan Jing's talk on Thurday morning

Backup slides

LHCb trigger

J/ψ production: signal extraction

24

- > J/ψ cross-section measured as a function of p_T and y at $\sqrt{s} = 8 \text{ TeV}$ [Previous measurements at 7 TeV and 2.76 TeV: EPJC71 (2011) 1645; JHEP 02 (2013) 041]
 - High efficiency for dimuon trigger
 - Excellent muon identification
 - Excellent J/ψ mass resolution: 14 MeV/ c^2 (28-40 MeV/ c^2 at CMS)
- → Prompt J/ψ and J/ψ from *b* separated by combined fits to dimuon invariant mass and t_z distributions in each (p_T, y) μ^+

J/ψ production: results and comparisons

- > Differential cross-sections of prompt J/ψ and J/ψ from b
- \succ Assuming J/ψ unpolarised

- Prompt J/ψ : in good agreement with NLO NRQCD
- J/ψ from b : in good agreement with FONLL
- Integrated cross-sections at different energies well agree with theory

$\Upsilon(nS)$ production measurement

JHEP 06 (2013) 064

 $\succ \Upsilon(nS)$ production cross-sections measured as a function of p_T and y at $\sqrt{s} = 8 \text{ TeV}$

$\chi_{cJ}(1P)$ production ratio: results

 σ(χ_{c2})/σ(χ_{c1}) decreases with p_T^{J/ψ}
 In agreement and more precise than previous measurements by LHCb unconverted γ, CMS and CDF

First evidence of χ_{c0} at hadron collider $\sigma(\chi_{c0})/\sigma(\chi_{c2})$ = 1.19 ± 0.27(stat) ± 0.29(syst) ± 0.16($p_{\rm T}$ model) ± 0.09(\mathcal{B})

CMS: EPJC72(2012)2251 CDF: PLB98(2007)232001

LHCb-PAPER-2013-028

B_c measurements at LHCb

Exotics

- ➤ X(3872) production and mass EPJC72 (2012) 1972; arXiv:1112.5310; LHCb-PAPER-2011-034

$$m_{X(3872)} = 3871.95 \pm 0.48 \,(\text{stat}) \pm 0.12 \,(\text{syst}) \,\text{MeV}/c^2$$

$$m_{\psi(2S)} = 3686.12 \pm 0.06 \,(\text{stat}) \pm 0.10 \,(\text{syst}) \,\text{MeV}/c^2$$

 $I^{PC} = 1^{++}$