

Diamond tracking detectors: present and future

Dmitry Hits on behalf of RD42 collaboration

Outline

- ATLAS Diamond Beam Monitor (DBM)
 - Design
 - Construction
 - Selected preliminary performance results with pre-production modules
- Diamond 3D detector
 - Principle
 - Fabrication
 - Beam test results

ATLAS DBM - purpose and specs

- Purpose
 - Bunch-by-bunch luminosity monitor (aim < 1 % per Bunch Crossing per Luminosity Segment)
 - → Finer segmentation (~27k pixels !)
 - ➡ Never saturates
 - Internal stability monitoring by tracking
 - Bunch-by-bunch beam spot monitor
 - Need triple-module telescopes for (limited) tracking
 - ➡ Can distinguish hits from beam halo tracks
 - ➡ Unbiased sample, acceptance extends far along beam axis
- Design considerations
 - Baseline: four telescopes of 3 modules per side \rightarrow 24 total
 - Design of the modules is identical to Insertable B-Layer (IBL) modules (the innermost pixel layer of ATLAS Detector)
 - Avoid IBL insertion volume and ID acceptance (η >2.5)
 - Place in pixel support structure close to detector and beam pipe

DBM Installation location

ETH Institute for Particle Physics

DBM production

- 6 inch diamond wafer grown by II-VI infrared
 - Pieces from the wafer selected based on leakage current and collected charge
- pieces are cut out from the wafer and thinned down/polished by II-VI infrared
 - 18 mm x 21 mm x 0.5 mm polyCVD
- sensors are metallized by OSU and IZM
- bump bonded to FE-I4 chips by IZM
- assembled into modules at CERN.

ETH zürich DBM: DESY beam test results

- Pre-production diamond planes bump bonded to FE-I4 chips
- Silicon sensor, also bump bonded to FE-I4 readout chip, was used as a reference plane
- Studied relative efficiency and resolution vs applied sensor bias and for several readout chip thresholds.
 - Bias: 660 V, 800 V, 1000 V
 - Threshold: 1100 e⁻, 1500 e⁻, 2000 e⁻, 2500 e⁻

MDBM-01, Threshold 1100 e

Distance in X [µm]

Diamond 3D devices

7

3D principle

- Same amount of charge deposited by ionizing particle
- Drift distances shorter than in planar ($\approx 100 \mu m vs. 500 \mu m$)
 - Comparable to mean free path of charge carriers in irradiated diamond (few 10^{15} p/cm²)
 - More efficient charge collection

ETH zürich

Drilling efficiency

- "Drill" columns in diamond with 800 nm femtosecond laser
- Tried 4 different "drilling" parameter
 - best is to "drill" fast and with low power

	low power	high power
low speed	92.2 ± 1.4 %	78.7 ± 2.1%
high speed	93.3 ± 1.3 %	87.6 ± 1.7 %

Metallization

- Cr/Au electrodes
 - Connecting a row of laser drilled columns with one strip
 - readout strips interdigitated with bias strips
- Wire bonded to VA2 readout chip

Beam test: setup

- CERN SPS H6 line
 - 120 GeV protons
- Strasbourg strip telescope
 - 4X, 4Y planes,
 - Resolution: a few μm
- Trigger coincidence of 2 scintillators

Beam test: DUT

- Single crystal CVD diamond
- Three test structures:
 - Strip detector as a reference to compare to with backplane (bias voltage)
 - Two 3D mask layouts (bias and readout from the same side)
 - Without machined columns (to understand influence of the electric field from surface metallization on charge collection efficiency)
 - With machined columns

Beam test analysis: clustering

- pedestal subtraction
- clustering
 - seed cut 5σ
 - hit cut 3σ

ETH zürich Beam test analysis: alignment

- Use the strip detector structure for precise alignment in Xdirection
 - Using strip with the highest signal

ETH*zürich* Beam test analysis: Fiducial regions

- Require one and only one cluster in each telescope plane
- Require at least one diamond cluster
- Plot PH in diamond for an average telescope position
- Overlay with a mask pattern
 - select a rough fiducial region

ETH*zürich* Beam test analysis: Fiducial regions

- Require one and only one cluster in each telescope plane
- Require at least one diamond cluster
- Plot PH in diamond for an average telescope position
- Overlay with a mask pattern
 - select a rough fiducial region

Beam test analysis: Pulse heights

Similar pulse height in every channel

ETH zürich

ETH Institute for Particle Physics

Landau distribution, MP @~1000

Entries 6227

Mear

RMS

4000

1055

200.3

Beam test analysis: Pulse heights

- Influence of strip structure (500V vs. 25V)
 - at lower channel numbers

ETH zürich

2000

Entries

Mean

RMS

4000

5997 516.6

253.2

ETH*zürich* Beam test analysis: Pulse heights

- Pulse heights for the whole 3D structure with conductive columns are plotted
 - no fiducial cuts within 3D structure
- Pulse heights are approximately the same for strip detector and 3D detector
 - 3D detector has only 25 V bias vs 500 V in strip detector!
- 3D detector has non-landauish tails
 - too low on the lower side and not high enough on the higher side

average cluster PH in adc counts

ETH Institute for Particle Physics

average cluster PH in adc counts

Particle Physics

Y-alignment

ETH*zürich* Beam test analysis: Pulse heights

- Overlay with 3D cell structure
 - about 8 out of 99 cells have broken readout column
- select fiducial region of 18 cells

ETH zürich Beam test analysis: Pulse heights

• better agreement of strip detector and 3D detector

article Physics

Conclusions

- RD42 explores the use of diamond tracking detector in high luminosity experiments
- One of the first diamond pixel tracking detector is being installed in a working experiment
 - DBM in ATLAS
 - PLT in CMS (pilot run)
- 3D structures show promise in diamonds
 - Full charge collection at lower voltage
- The production of 3D electrodes needs to be further optimized
 - more efficient "hole" drilling
- The radiation hardness of 3D detectors needs to be studied

Additional slides

24

Metallization

Column Fabrication

Surface Treatment

ETH Institute for Particle Physics

ETH zürich

FH*zürich* Fabrication – Column formation

- Femto second laser
 - Wavelength = 800 nm
 - Repetition rate = 1 kHz
 - Pulse duration = 100 fs
 - Spot size = $6 \mu m$
 - Pulse Energy:
 - $E = 1 23 \mu J/pulse$
 - $\Phi = 1 30 \text{ J/cm}^2$

Column drilling

• extra material forms small bumps on the seed side

Column drilling

• On the exit side the "craters" are formed

Beam test analysis: Fiducial regions

• Fiducial regions for the three different patterns

First DBM modules

ETH Institute for Particle Physics