

# Search for supersymmetry with a compressed mass spectrum in events involving soft leptons, jets and missing transverse momentum with $\mathcal{L}$ =20.1 fb<sup>-1</sup> of $\sqrt{s}$ =8 TeV ATLAS data **ATLAS-CONF-2013-062**

# Introduction

**Compressed supersymmetry (SUSY)** refers to models where the mass splitting between the sparticles is small, and, as a result, the standard model (SM) particles produced in their decays have low momentum (are soft). Such spectrum occurs, e.g., in "natural" SUSY scenario [1, 2] where at least one top squark and higgsinos are light, resulting in the lightest neutralino and chargino being almost degenerate in mass.

Compressed spectrum is naturally realised also in the **minimal Universal Extra Dimension** (mUED) model [3]. In this model all the SM fields propagate in (one) compactified extra dimension. Decay chains resemble the ones in SUSY.



#### Complimentary to the hard-lepton analysis

# Signal regions

#### Seven signal regions (SR) are defined, targeting different scenarios

|                                             | single-lepton one b-jet           |             | single-lepton two b-jets |           | single-lepton |          | dimuon   |
|---------------------------------------------|-----------------------------------|-------------|--------------------------|-----------|---------------|----------|----------|
|                                             | low-mass                          | high-mass   | low-mass                 | high-mass | 3-jet         | 5-jet    | 2-jet    |
| $N_{ m jet}$                                | $\geq 3$                          |             | $\geq 2$                 |           | [3, 4]        | $\geq 5$ | $\geq 2$ |
| $p_T^{jets}$ (GeV)                          | > 180,40,40                       | > 180,25,25 | $> 60,\!60$              |           | > 180,25,25   |          | >70,25   |
| $N_{b-\mathrm{tag}}$                        | $\geq$ 1, but not the leading jet |             | 2                        |           | — —           |          | 0        |
| $E_T^{miss} (\text{GeV})$                   | >250                              | >300        | >200                     | >300      | >400          | >300     | >170     |
| $m_T ({\rm GeV})$                           | > 100                             |             | _                        |           | > 100         |          | > 80     |
| $E_T^{miss} / m_{\text{eff}}^{\text{incl}}$ | > 0.35                            |             |                          |           | > 0.3         |          | _        |
| $m_{\rm CT}$ (GeV)                          | _                                 |             | >150                     | >200      |               |          | —        |

leading jets are leading jet is ISR b-jets from t  $\tilde{t} \to \tilde{\chi}_1^{\pm} b \to \tilde{\chi}_1^0 W^* b$ 

mUED inclusive analysis q - q

q - q

•  $E_{T}^{miss}$  trigger is used (with  $E_{T}^{miss}$  >80 GeV)

Overall mass scale of the event: 
$$m_{\text{eff}}^{\text{inc}} = \sum_{i=1}^{N_{\ell}} p_{\text{T},i}^{\ell} + \sum_{j=1}^{N_{jet}} p_{\text{T},j} + E_{\text{T}}^{\text{miss}}$$
  
Transverse mass useful to reject  $W \to \ell \nu$  events:

# **Background estimation**

### tt and W/Z+jets

Combined fit to the data is performed, based on the profile likelihood method

Overall normalisation scales for tt and W/Z +jets are extracted from respective control regions (CRs) where each of the two backgrounds dominates

Showing CRs for 1-lepton + 3-jets SR as an example

The fit results are checked in the validation regions (VRs)

<u>Good agreement observed, mostly within 1 sigma</u>

#### **Misidentified-lepton background**

Jet misidentified as a lepton, or lepton coming from b- or c- hadron decays



#### Plots in CRs after scaling MC to the data



 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos(\Delta \phi(\vec{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})))}$ 

Contransverse mass, measure of the masses of pair-produced heavy particles decaying into states involving  $E_T^{miss}$ :

 $m_{CT}^{2}(b-jet_{1}, b-jet_{2}) = [E_{T}(b-jet_{1}) + E_{T}(b-jet_{2})]^{2} - [p_{T}(b-jet_{1}) - p_{T}(b-jet_{2})]^{2}$ 

- Suppressed by requiring lepton to be well isolated
- Estimated in a purely data-driven way (the matrix-method)

Other minor backgrounds (**diboson**, single top,  $t\bar{t} + V$ ) are estimated using MC

## <u>Results</u>

700

600

**ATLAS** Preliminary

800  $\vdash$  L dt = 20.3 fb<sup>-1</sup>,  $\sqrt{s}$ =8 TeV

All limits at 95% CL

 $\longrightarrow$  Observed limit (±1 $\sigma_{\mu}^{s}$ 

-- Expected limit (±1  $\sigma_{exp}$ 

 $\tilde{g}-\tilde{g} \rightarrow qqqqWW\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}, x=1/2 \qquad x = (m_{\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}})/(m_{\tilde{g}(\tilde{q})} - m_{\tilde{\chi}_{1}^{0}})$ 



No significant excess above the Standard Model expectation is observed The largest excess is seen in the dimuon channel - 2.3  $\sigma$ Limits on specific models, as well as on the visible cross-section, are obtained

# Expected and observed number of events

mit (hard lepton)

|                   | single-lepton one $b$ -jet |               | single-lepton two $b$ -jet |               | single-lepton |              | dimuon        |
|-------------------|----------------------------|---------------|----------------------------|---------------|---------------|--------------|---------------|
|                   | low-mass                   | high-mass     | low-mass                   | high-mass     | 3-jet         | -<br>5-jet   | 2-jet         |
| Observed events   | 8                          | 6             | 24                         | 3             | 7             | 9            | 7             |
| Fitted background | $6.1 \pm 1.4$              | $4.0 \pm 1.1$ | $24.1\pm4.1$               | $3.6 \pm 1.4$ | $5.6 \pm 1.6$ | $14.8\pm3.7$ | $1.6 \pm 1.0$ |

1000 🗄

700

600



# m<sub>ct</sub> [ĞeŬ] m<sub>ct</sub> [GeV<sub>]</sub>

#### **References:**

[1] Nucl.Phys. **B306** (1988) 63 [2] arXiv:hep-ph/9303291 [hep-ph] [3] Phys. Rev. **D66** (2002) 56006

# EPS-HEP, Stockholm, July 18th-24th 2013

 $\tilde{\mathbf{q}} \cdot \tilde{\mathbf{q}} \to \mathbf{q} \mathbf{q} \mathbf{W} \mathbf{X}_{\star}^{0} \mathbf{X}_{\star}^{0}, \mathbf{x} = 1/2 \quad x = (m_{\tilde{\chi}_{1}^{\pm}} - m_{\tilde{\chi}_{1}^{0}}) / (m_{\tilde{g}(\tilde{q})} - m_{\tilde{\chi}_{1}^{0}})$ 

ATLAS Preliminary

Observed limit (±1  $\sigma_{\text{theorem}}^{\text{SUSY}}$ 

-- Expected limit (±1  $\sigma_{ovr}$ 

900  $\vdash$  1-lepton + jets +  $E_{\tau}^{miss}$ 

800 ⊢ L dt = 20.3 fb<sup>-1</sup>, √s=8 TeV

Ljiljana Morvaj, Nagoya University On behalf of the ATLAS collaboration

