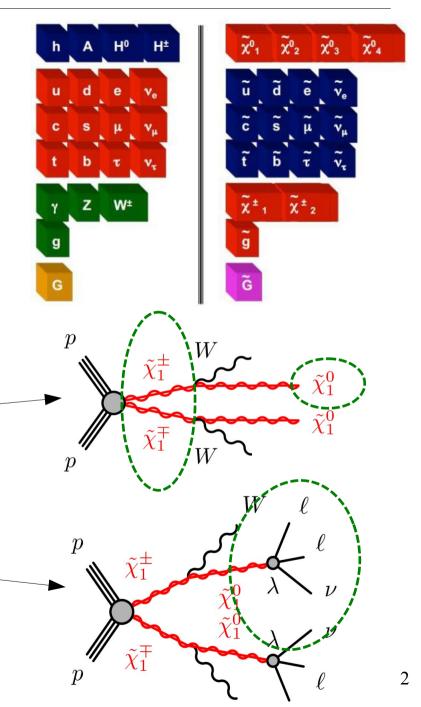
Searches for Electroweak Production of Neutralinos, Charginos, and Sleptons with the ATLAS Detector

Sam King

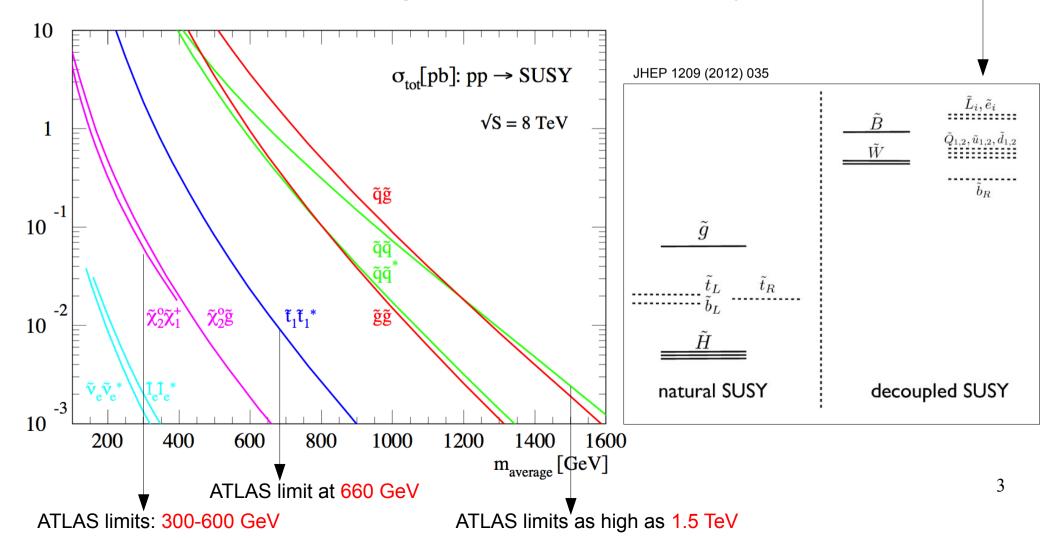
on behalf of the ATLAS Collaboration University of British Columbia, TRIUMF

EPSHEP 19/07/13



Supersymmetry (SUSY)

- Standard Model superpartners
- Half-unit spin difference; theoretically attractive
- Gaugino-higgsino mixing mass eigenstates:
 - Charginos $(C_i, \tilde{\chi}_i^{\pm})$
 - Neutralinos (N_j , $\tilde{\chi}_j^0$)
- *R*-parity: $P_R = (-1)^{3(B-L)+2S}$
- Conservation (RPC):
 - Pair-produced sparticles
 - Stable LSP; final state MET
- Violation (RPV):
 - Unstable LSP; multi-object events



Electroweak (EWK) SUSY: Motivation

- Strong SUSY favored for early LHC discovery (larger σ)
- ATLAS/CMS $m_{\tilde{q},\tilde{g}}$ limits now quite stringent
- Naturalness

 ight higgsinos

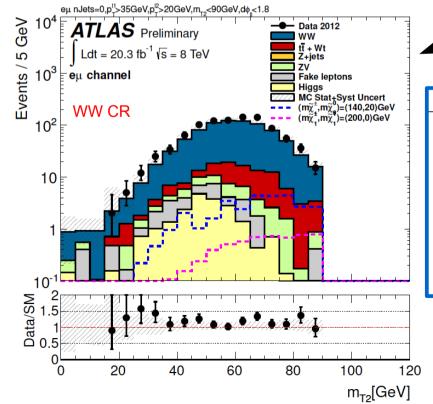
 interest growing in weak SUSY
- EWK production (direct C_i , N_i , and/or sleptons) might be dominant at LHC
- Characteristic multi-lepton signatures with low hadronic activity: low SM BG

Overview: ATLAS EWK SUSY Search Strategy

- Simplified models: minimal particle content necessary for multilepton SUSY-like events
- Parametrized with masses; agnostic about couplings, interference terms; topologically generic
- Four ATLAS analyses divided by final state lepton multiplicity and flavor
- Analyses interpreted in various simplified models

Direct production mode	Final state(s)
p $\tilde{\chi}_{1}^{\pm}$ p $\tilde{\chi}_{1}^{\mp}$	 2L (e, μ, τ) + MET 4L (e, μ, τ) + MET (RPV)
p $\tilde{\chi}_{1}^{\pm}$ $\tilde{\chi}_{2}^{0}$	 2τ + MET 3L (e, μ) + MET
p $\tilde{\chi}_{2}^{0}$ $\tilde{\chi}_{3}^{0}$	• 4L (e, μ) + MET

- Additional interpretations for 2L, 27, 4L
- All analyses use full 2012 8 TeV dataset (~21 fb⁻¹)
- Useful terms: Signal region (SR), control region (CR), Validation region (VR)


Direct production mode	Final state(s)
p $\tilde{\chi}_{1}^{\pm}$ p $\tilde{\chi}_{1}^{0}$	• 4L (e, μ, τ) + MET (GGM)
	• 2L (e, μ) + MET

Two Lepton Analysis: Introduction

- "Cut & count" analysis targeting direct C₁C₁ and slepton production
- Two mass hierarchies considered for $C_{_1}C_{_1}$ simplified models:
 - Mass degenerate light sleptons (cascades via sleptons)
 - Heavy sleptons (cascades via WW)
- Five SR with two OS leptons; key variable:

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$

- Leading BGs: ttbar, WW
- BG modelling:
 - Irreducible: Normalize MC via simultaneous likelihood fit in CRs
 - Reducible: data-driven

	$SR-m_{T2,90}$	SR- <i>m</i> _{T2,110}	SR-WWa	SR-WWb	SR-WWc	
lepton flavour	$e^{+}e^{-}, \mu^{+}$	$\mu^-, e^{\pm}\mu^{\mp}$		$e^{\pm}\mu^{\mp}$		
$p_{\mathrm{T}}^{\ell 1}$	_	<u> </u>	> 35 GeV			
$p_{ m T}^{ ilde{t}2}$	-	<u> </u>		> 20 GeV		
$m_{\ell\ell}$	Z \cdot	veto	< 80 GeV	< 130 GeV	_	
$p_{\mathrm{T},\ell\ell}$	_		> 70 GeV	< 170 GeV	< 190 GeV	
$\Delta\phi_{\ell\ell}$						
$E_{ m T}^{ m miss,rel}$	> 40 GeV		> 70 GeV	_	_	
$m_{ m T2}$	> 90 GeV	> 110 GeV	—	> 90 GeV	> 100 GeV	

 ν/ℓ

Two Lepton Analysis: Results

eμ nJets=0, Zveto, E___s40 GeV, m_s>90 GeV

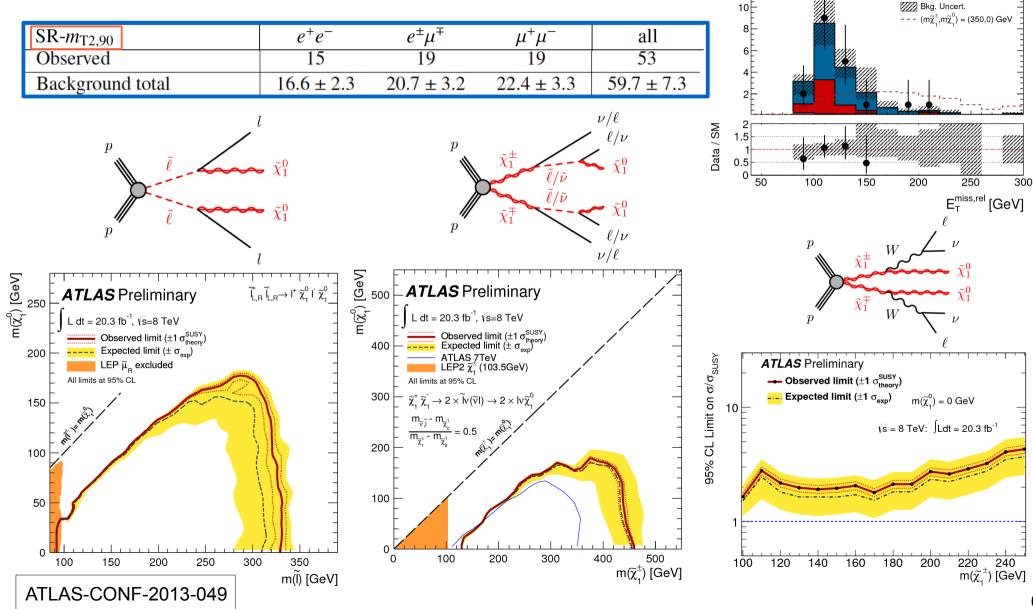
L dt=20.3 fb⁻¹ \s=8 TeV

Data 2012

tt + Wt

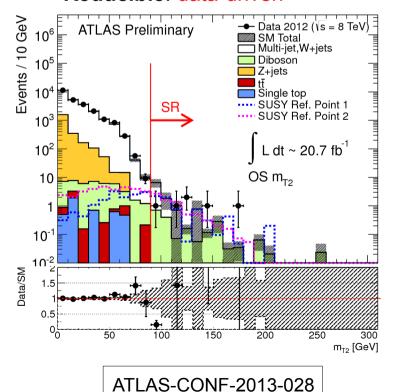
Fake leptons

ww


Z+jets ZV

Higgs

18 ATLAS Preliminary


12F

- No significant excesses over SM observed in any SR
- 95% CL upper limits set on visible cross section
- Interpret this null result in SUSY signal models
- Limits on model parameters set at 95% CL

Two Tau Analysis

- Targeting direct C₁N₂, C₁C₁
 production
- Target models where staus are the only light sleptons
- Two SR with two OS (hadronic) taus; m_{T2} still key variable
- Leading BGs are reducible: W+j, QCD
- BG modelling:
 - Irreducible: From MC (normalized in CR)
 - Reducible: data-driven

Signal region requirements OS $m_{\rm T2}$ at least 1 OS tau pair jet veto pZ-veto $E_{\rm T}^{\rm miss} > 40~{\rm GeV}$ $m_{\rm T2} > 90 {\rm GeV}$ OS m_{T2}-nobjet at least 1 OS tau pair b-jet veto Z-veto $E_{\rm T}^{\rm miss} > 40~{\rm GeV}$ $m_{\rm T2} > 100 {\rm GeV}$ ATLAS Preliminary $ightarrow \widetilde{\tau}_{_{1}} v \ (\widetilde{\tau}\widetilde{v}) \ \widetilde{\tau}_{_{1}} \tau (\widetilde{v}v)
ightarrow \widetilde{\tau} v \widetilde{\chi}_{_{1}}^{0} \ t \tau (vv) \widetilde{\chi}_{_{1}}^{0}$ L dt = 20.7 fb⁻¹. \s=8 TeV Observed limit (±1 σ_{theory}^{SUSY} Expected limit (±1σ_{exp}) 250 200 150 100 350 200 250 300 400 450 $m_{\tilde{\chi}_{*}^{\pm},\tilde{\chi}_{*}^{0}}$ [GeV] **ATLAS** Preliminary SR combined $\vec{\mathsf{F}}^{\mathsf{T}} = 250 \quad - \tilde{\chi}_{\mathsf{T}}^{\mathsf{T}} \tilde{\chi}^{\mathsf{T}} \to 2 \times \tilde{\mathsf{T}} \mathsf{V}(\tilde{\mathsf{V}} \tilde{\mathsf{T}}) \to 2 \times \mathsf{T} \mathsf{V} \tilde{\chi}^{\mathsf{O}}$ L dt = 20.7 fb^{-1} , $\sqrt{s}=8 \text{ TeV}$ Observed limit (±1 σ_{theory}^{SUSY}) 200 ==== Expected limit (±1 σ_{exp}) All limits at 95% CL 150 100 50

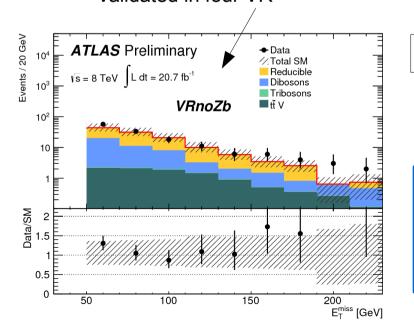
150

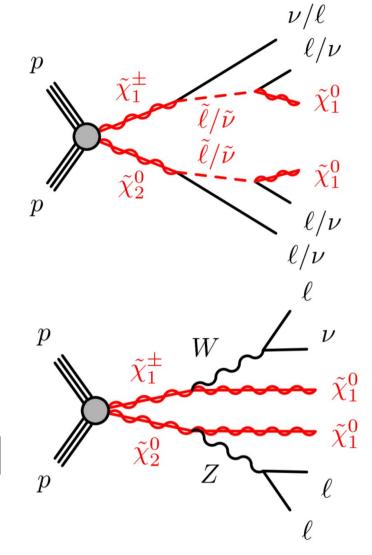
200

250

350

 $m_{\tilde{\chi}_1^{\pm}}$ [GeV]

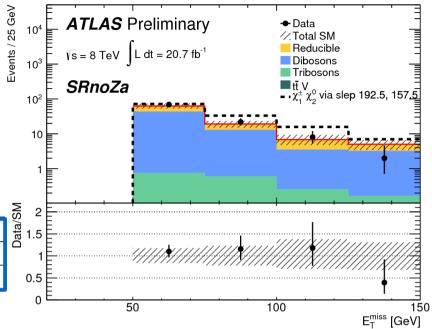

300

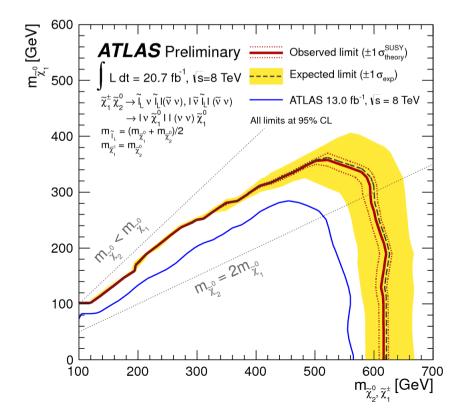

Three Lepton Analysis: Introduction

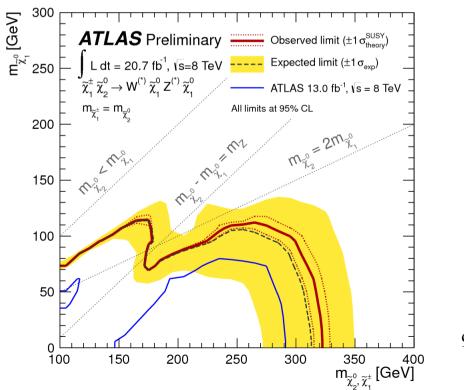
- Targeting direct C₁N₂ production
- Two classes of simplified model:
 - Mass degenerate light sleptons
 - Heavy sleptons
- Six SR; Z-enriched, Z-depleted; targeted optimization
- Leading BG: WZ
- Irreducible BG: From MC (validated in dedicated regions)
- Reducible BG: data-driven matrix method
 - Efficiencies and fake rates relate kinematic lepton properties and R/F composition

$$\begin{pmatrix} N_{TT} \\ N_{TL'} \\ N_{L'T} \\ N_{L'L'} \end{pmatrix} = \begin{pmatrix} \epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\ \epsilon_1 (1 - \epsilon_2) & \epsilon_1 (1 - f_2) & f_1 (1 - \epsilon_2) & f_1 (1 - f_2) \\ (1 - \epsilon_1) \epsilon_2 & (1 - \epsilon_1) f_2 & (1 - f_1) \epsilon_2 & (1 - f_1) f_2 \\ (1 - \epsilon_1) (1 - \epsilon_2) & (1 - \epsilon_1) (1 - f_2) & (1 - f_1) (1 - \epsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

- $f_{_{\!\!M\!G}}$ corrected with fake rate SF measured in dedicated CR
- Invert matrix to obtain reducible BG estimate
- Validated in four VR

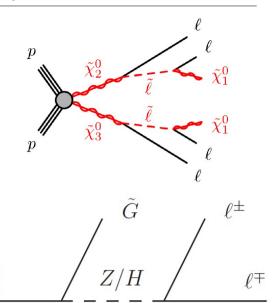


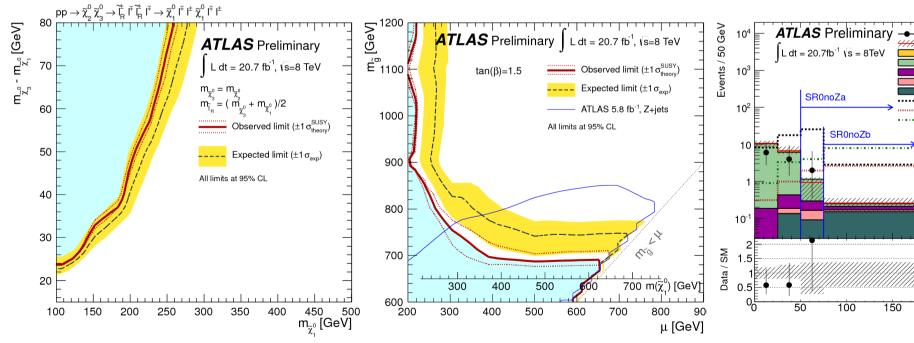

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
$m_{ m SFOS}$ [GeV]	<60	60-81.2	<81.2 or >101.2	81.2-101.2	81.2-101.2	81.2-101.2
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	>50	>75	>75	75–120	75–120	>120
$m_{\rm T}$ [GeV]	_	_	>110	<110	>110	>110
p_{T} 3 rd ℓ [GeV]	>10	>10	>30	>10	>10	>10
SR veto	SRnoZc	SRnoZc	_	_	_	_

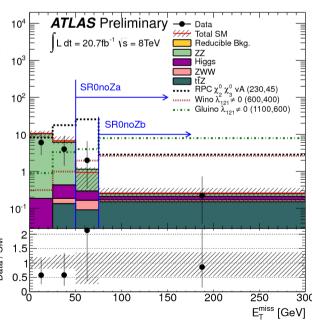

Three Lepton Analysis: Results

- 95% CL limits set on visible cross section and on simplified model parameters
- Loose signal regions ("a"): sensitivity to compressed scenarios
- Tight signal regions ("b," "c"): sensitivity to larger mass splittings

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
Σ SM	96 ± 19	29 ± 6	$\textbf{4.4} \pm \textbf{1.8}$	249 ± 35	22 ± 5	$\textbf{6.3} \pm \textbf{1.5}$
Data	101	32	5	273	23	6







Four Lepton Analysis (RPC)

- Inclusive (≥4L) analysis targeting RPC N₂N₃ production and general gauge mediation (GGM)
- Two sets of mass hierarchies considered for N_2N_3 simplified models
- GGM: higgsino-like N_1 decays via gravitino LSP; high m_{qluino}
 - Two models $(\tan \beta = 1.5, \tan \beta = 30)$ to probe $N_1 \rightarrow (Z, H)G$
- Three targeted SR
- Very sensitive/versatile search (low BG); leading BGs: ZZ, ttbarZ, H
- Irreducible BG: from MC (validated in VRs); reducible: data-driven
- See talk by W. Ehrenfeld for four lepton RPV results

Conclusions

- EWK production may be the dominant SUSY mode at LHC energies
- ATLAS searches for EWK SUSY using full 8 TeV 2012 dataset have been presented; two underlying processes targeted:
 - Direct chargino/neutralino production with subsequent cascades via sleptons and/or gauge bosons
 - Direct slepton production
- No significant excesses observed over Standard Model predictions
- 95% CL upper limits placed on visible cross sections and interpreted in simplified model (RPC and RPV), pMSSM, and GGM scenarios; good sensitivity to natural SUSY
- Re-analysis of 2012 data (in progress) is expected to improve sensitivity in all channels

	+
	C
\leq	(i)
$\overline{}$	2
Ш	
	C

$egin{aligned} ilde{\ell}_{L,R} ilde{\ell}_{L,R}, ilde{\ell} ightarrow \ell ilde{\chi}_1^0 \ ilde{\chi}_1^+ ilde{\chi}_1^-, ilde{\chi}_1^+ ightarrow ilde{\ell} u(\ell ilde{v}) \end{aligned}$	
$\widetilde{\chi}_1^+\widetilde{\chi}_1^-,\widetilde{\chi}_1^+{ ightarrow}\widetilde{\ell} u(\ell\widetilde{ u})$	
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ $\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}_{V}(\tau\tilde{\nu})$	
${ ilde \chi}_1^{\pm} { ilde \chi}_2^0 { ightarrow} { ilde \ell}_{L} v { ilde \ell}_{L} \ell (ilde v v), \ell ilde v { ilde \ell}_{L} \ell (ilde v v)$)
$ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) $ $ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W^{*}\tilde{\chi}_{1}^{0}Z^{*}\tilde{\chi}_{1}^{0} $	

	1	
$2e,\mu$	$ ilde{m{\ell}}$	85-315 GeV
$2e,\mu$	$ ilde{\mathcal{X}}_1^{\pm}$	125-450 GeV
2 e, μ 2 e, μ 2 τ	$ ilde{\mathcal{X}}_1^{\pm}$	180-330 GeV
$3e,\mu$	$ ilde{\chi}_1^{\pm}$, $ ilde{\chi}_2^0$	600 GeV
$3e,\mu$	${ ilde \chi}_1^{\pm}$, ${ ilde \chi}_2^{ar 0}$	315 GeV

RPV

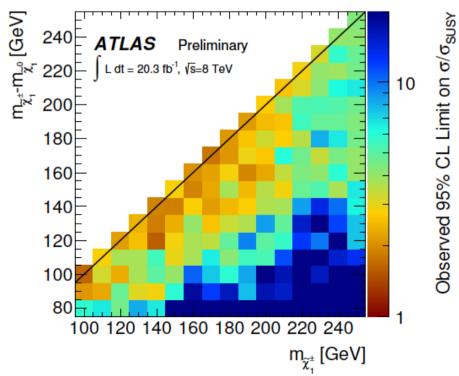
$$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tilde{v}_{e} \qquad 4 e, \mu \\
\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\tilde{v}_{e}, e\tau\tilde{v}_{\tau} \qquad 3 e, \mu + \tau$$

$$\tilde{\chi}_{1}^{\pm} \qquad \qquad 350 \text{ GeV}$$

Additional Slides

2L: BG Modeling

- Dedicated CR for top, WW and ZV (hadronic jet/HF/conversion fake lepton BG matrix method; others from MC)
- Each SR has set of (kinematically similar) CRs
- In CR, extract SF for SR: $N_B^{\text{SR}} = \left[\frac{N^{\text{CR}} N_{\text{other}}^{\text{CR}}}{N_{B,\text{MC}}^{\text{CR}}} \right] \times N_{B,\text{MC}}^{\text{SR}}$
- Done via simultaneous likelihood fit in SR and CR (systematics as nuisance parameters; SFs float in fit)
- Systematics:


-		$SR-m_{T2,90}$		SR-m _{T2,110}		SR-WW ($e^{\pm}\mu^{\mp}$		$^{\pm}\mu^{\mp})$		
		e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$	e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$	a	b	c
-	MC statistics	7.7	6.1	7.5	12	8.2	14	2.9	8.5	11
	Jet	9.5	17	12	14	13	6.8	3.1	5.0	7.0
	Lepton	3.9	0.5	4.8	5.2	0.5	1.2	1.1	1.7	5.3
	Soft term	1.9	3.2	6.0	3.0	1.0	0.7	1.0	4.6	4.3
	b-tagging	0.2	0.2	0.2	0.2	0.3	0.2	0.4	0.7	0.5
	Fake lepton	1.0	0.7	0.6	1.5	1.9	3.0	0.1	1.2	1.2
	Luminosity	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Generator ◄	Theory & modelling	9.7	9.4	11	32	36	43	12	14	14
-	Total	14	15	16	36	38	45	12	17	20

2L: Complete Results

Observations in all SR:

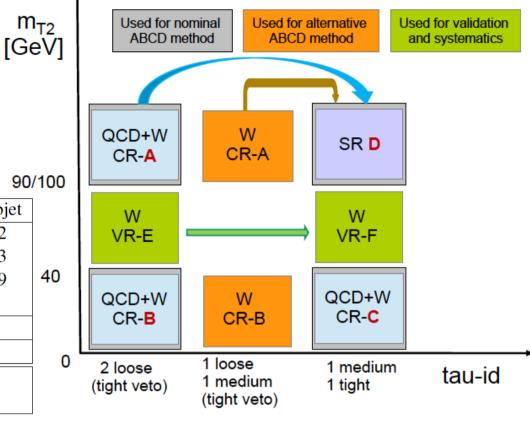
SR-m _{T2,90}	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	15	19	19	53
Background total	16.6 ± 2.3	20.7 ± 3.2	22.4 ± 3.3	59.7 ± 7.3
WW	9.3 ± 1.6	14.1 ± 2.2	12.6 ± 2.0	36.1 ± 5.1
ZV (V = W or Z)	6.3 ± 1.5	0.8 ± 0.3	7.3 ± 1.7	14.4 ± 3.2
Тор	$0.9^{+1.1}_{-0.9}$	5.6 ± 2.1	2.5 ± 1.8	8.9 ± 3.9
Higgs	0.11 ± 0.04	0.19 ± 0.05	0.08 ± 0.04	0.38 ± 0.08
Fake	$0.00^{+0.18}_{-0.00}$	$0.00^{+0.14}_{-0.00}$	$0.00^{+0.15}_{-0.00}$	$0.00^{+0.28}_{-0.00}$
Signal expectation				
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (191, 90) \text{ GeV}$	21.6	0	21.6	43.2
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (251, 10) \text{ GeV}$	12.2	0	12.5	24.7
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 0) \text{ GeV}$	11.7	16.6	10.5	38.8
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (425, 75) \text{ GeV}$	4.3	6.7	4.4	15.4
Observed σ_{vis}^{95} (fb)	0.44	0.51	0.47	0.81
Observed σ_{vis}^{95} (fb) Expected σ_{vis}^{95} (fb)	$0.50^{+0.22}_{-0.15}$	$0.57^{+0.25}_{-0.17}$	$0.58^{+0.25}_{-0.17}$	$1.00^{+0.41}_{-0.28}$
$SR-m_{T2,110}$	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all
Observed	4	5	4	13
Background total	6.1 ± 2.2	4.4 ± 2.0	6.3 ± 2.4	16.9 ± 6.0
WW	2.7 ± 1.5	3.6 ± 2.0	2.9 ± 1.6	9.1 ± 4.9
ZV (V = W or Z)	2.7 ± 1.4	0.2 ± 0.1	3.4 ± 1.8	6.3 ± 3.3
Тор	0.7 ± 0.7	0.6 ± 0.4	0.0 ± 0.0	1.3 ± 1.0
Higgs	0.05 ± 0.03	0.12 ± 0.04	0.05 ± 0.02	0.22 ± 0.05
Fake	$0.00^{+0.09}_{-0.00}$	$0.00^{+0.13}_{-0.00}$	$0.00^{+0.12}_{-0.00}$	$0.00^{+0.28}_{-0.00}$
Signal expectation				
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (191, 90) \text{ GeV}$	12.3	0	12.0	24.3
$(m_{\tilde{\ell}}, m_{\tilde{\chi}_1^0}) = (251, 10) \text{ GeV}$	10.5	0	11.2	21.7
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (350, 0) \text{ GeV}$	9.5	14.0	8.7	32.2
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (425, 75) \text{ GeV}$	3.7	1.1	3.8	8.5
* A1 X1				
Observed σ_{vis}^{95} (fb) Expected σ_{vis}^{95} (fb)	0.27 0.33 ^{+0.16}	0.35 0.33 ^{+0.16}	0.28 0.33 ^{+0.16}	0.54 $0.62^{+0.23}_{-0.16}$

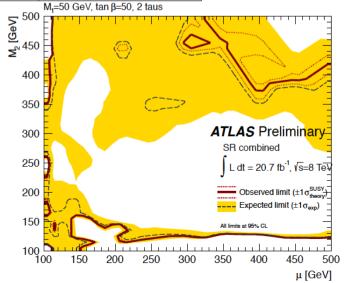
	SR-WWa	SR-WWb	SR-WWc
Observed	123	16	9
Background total	117.9 ± 14.6	13.6 ± 2.3	7.4 ± 1.5
Тор	15.2 ± 6.6	2.7 ± 1.1	1.0 ± 0.7
WW	98.6 ± 14.6	10.2 ± 2.1	5.9 ± 1.3
ZV (V = W or Z)	3.4 ± 0.8	$0.26^{+0.31}_{-0.26}$	0.29 ± 0.14
Higgs	0.76 ± 0.14	0.21 ± 0.06	0.10 ± 0.04
fake	$0.02^{+0.33}_{-0.02}$	$0.26^{+0.30}_{-0.26}$	$0.12^{+0.17}_{-0.12}$
Signal expectation			
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (100, 0) \text{ GeV}$	31	N/A	N/A
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (140, 20) \text{ GeV}$	N/A	8.2	N/A
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (200, 0) \text{ GeV}$	N/A	N/A	3.3
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (110, 113) \text{ GeV}$	18	4.3	N/A
Observed $\sigma_{\rm vis}^{95}$ (fb)	1.94	0.58	0.43
Expected σ_{vis}^{95} (fb)	$1.77^{+0.66}_{-0.49}$	$0.51^{+0.21}_{-0.15}$	$0.37^{+0.18}_{-0.11}$

2T: Additional Details

Reducible BG (leading W+j and QCD) estimated with ABCD method

• Irreducible (top, diboson) from MC


• Systematics:


Syst. Sources	SR OS-m _{T2}	SR OS- <i>m</i> _{T2} -nobjet
Correlation	5%	1%
Transfer factor difference	15%	24%
Subtraction of other backgrounds	2%	6%
Number of events in Region A	31%	27%
Total	35%	37%

Results:

SM process	SR OS m_{T2}	SR OS $m_{\rm T2}$ -nobjet
top	$0.2 \pm 0.5 \pm 0.1$	$1.6 \pm 0.8 \pm 1.2$
Z+jets	$0.28 \pm 0.26 \pm 0.23$	$0.4 \pm 0.3 \pm 0.3$
diboson	$2.2 \pm 0.5 \pm 0.5$	$2.5 \pm 0.5 \pm 0.9$
multi-jet & W+jets	$8.4 \pm 2.6 \pm 1.4$	$12 \pm 3 \pm 3$
SM total	$11.0 \pm 2.7 \pm 1.5$	$17 \pm 4 \pm 3$
data	6	14
SUSY Ref. point 1	6.8 ± 1.0	9.2 ± 1.2
SUSY Ref. point 2	7.5 ± 0.7	8.9 ± 0.7

Additional interpretation:

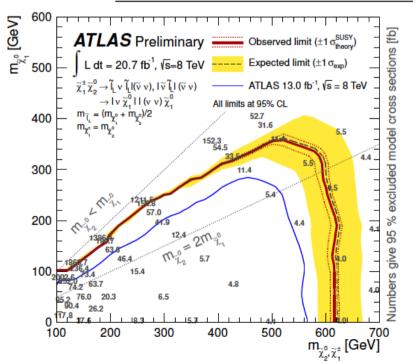
3L: Matrix Method

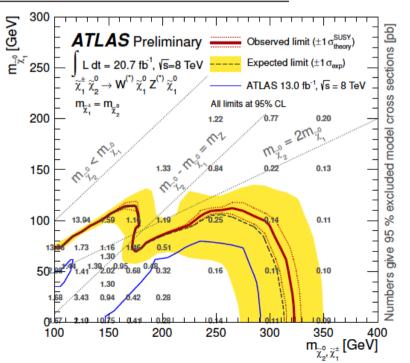
 System of linear equations relates kinematic properties of leptons (LHS) to real/fake lepton composition (RHS)

$$\begin{pmatrix} N_{TT} \\ N_{TL'} \\ N_{L'T} \\ N_{L'L'} \end{pmatrix} = \begin{pmatrix} \epsilon_1 \epsilon_2 & \epsilon_1 f_2 & f_1 \epsilon_2 & f_1 f_2 \\ \epsilon_1 (1 - \epsilon_2) & \epsilon_1 (1 - f_2) & f_1 (1 - \epsilon_2) & f_1 (1 - f_2) \\ (1 - \epsilon_1) \epsilon_2 & (1 - \epsilon_1) f_2 & (1 - f_1) \epsilon_2 & (1 - f_1) f_2 \\ (1 - \epsilon_1) (1 - \epsilon_2) & (1 - \epsilon_1) (1 - f_2) & (1 - f_1) (1 - \epsilon_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \cdot \begin{pmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{pmatrix}$$

- Loose (L): baseline leptons, tight (T): signal leptons, L': L¬T
- R: real, F: fake
- ε: probability that LR lepton is T, f: probability that LF lepton is T
- Only 4x4 matrix is needed (vs. 8x8); 99% leading lepton real
- Efficiencies measured in dedicated control region
- Fake rates obtained in each region XR by summing over types and processes:

$$f_{XR} = \sum_{i,j} (SF^i \times R^{ij}_{XR} \times f^{ij})$$
 SF; scale factor for fake type i R^{ij}_{XR}: fraction of fake type i from process j in XR


Matrix then inverted to obtain F estimate:


$$N_{Fake \to TT} = \epsilon_1 f_2 \times N_{RF} + f_1 \epsilon_2 \times N_{FR} + f_1 f_2 \times N_{FF}$$

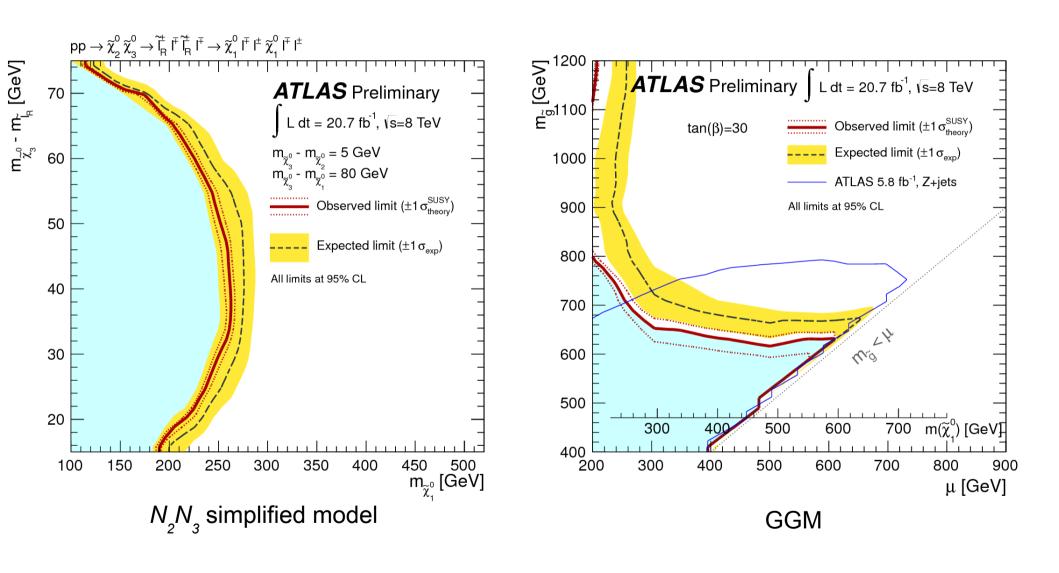
3L: Additional Details

- Leading systematics: MC statistics (~4%), BG σ (~11%), MC generator (~18%); total ~ 15-30%
- Complete breakdown of results:

Selection	SRnoZa	SRnoZb	SRnoZc	SRZa	SRZb	SRZc
Tri-boson	1.7 ± 1.7	0.6 ± 0.6	0.8 ± 0.8	0.5 ± 0.5	0.4 ± 0.4	0.29 ± 0.29
ZZ	14 ± 8	1.8 ± 1.0	0.25 ± 0.17	8.9 ± 1.8	1.0 ± 0.4	0.39 ± 0.28
$t\bar{t}V$	0.23 ± 0.23	0.21 ± 0.19	$0.21^{+0.30}_{-0.21}$	0.4 ± 0.4	0.22 ± 0.21	0.10 ± 0.10
WZ	50 ± 9	20 ± 4	2.1 ± 1.6	235 ± 35	19 ± 5	5.0 ± 1.4
Σ SM irreducible	65 ± 12	22 ± 4	3.4 ± 1.8	245 ± 35	20 ± 5	5.8 ± 1.4
SM reducible	31 ± 14	7 ± 5	1.0 ± 0.4	4 ⁺⁵ ₋₄	1.7 ± 0.7	0.5 ± 0.4
Σ SM	96 ± 19	29 ± 6	$\textbf{4.4} \pm \textbf{1.8}$	249 ± 35	22 ± 5	6.3 ± 1.5
Data	101	32	5	273	23	6
p ₀ -value	0.41	0.37	0.40	0.23	0.44	0.5
N _{signal} excluded (exp)	39.3	16.3	6.2	67.9	13.2	6.7
N_{signal} excluded (obs)	41.8	18.0	6.8	83.7	13.9	6.5
σ_{visible} excluded (exp) [fb]	1.90	0.79	0.30	3.28	0.64	0.32
$\sigma_{ m visible}$ excluded (obs) [fb]	2.02	0.87	0.33	4.04	0.67	0.31

4L: Additional Details

• Reducible BG (HF, LF, conversion leptons) from data-driven weighting method (WZ, ttbar, etc.)


•
$$N_{red} \sim [N_{\text{data}}(3\ell_S + \ell_L) - N_{\text{MCirr}}(3\ell_S + \ell_L)] \times F(\ell_L)$$

- $[N_{\text{data}}(2\ell_S + \ell_{L_1} + \ell_{L_2}) - N_{\text{MCirr}}(2\ell_S + \ell_{L_1} + \ell_{L_2})] \times F(\ell_{L_1}) \times F(\ell_{L_2})$

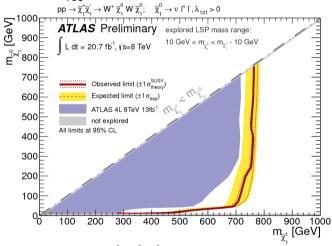
• Leading systematics: BG σ and generator (total ~50%)

SR	$N(\ell = e, \mu)$	$N(\tau)$	Z Candidate	$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}]$		$m_{\rm eff} [{ m GeV}]$	Scenario
SR0noZa	≥4	≥0	extended veto	>50			RPC
SR0noZb	≥4	≥0	extended veto	>75	or	>600	RPV
SR1noZ	=3	≥1	extended veto	>100	or	>400	RPV
SR0Z	≥4	≥0	request	>75			GGM
SR1Z	=3	≥1	request	>100			GGM

Sample	SR0noZa	SR0noZb	SR1noZ	SR0Z	SR1Z
ZZ	0.6 ± 0.5	0.50 ± 0.26	0.19 ± 0.05	1.2 ± 0.4	0.49 ± 0.10
ZWW	0.12 ± 0.12	0.08 ± 0.08	0.05 ± 0.05	0.6 ± 0.6	0.13 ± 0.13
tīZ	0.73 ± 0.34	0.75 ± 0.35	0.16 ± 0.12	2.3 ± 0.9	0.29 ± 0.24
Higgs	0.26 ± 0.07	0.22 ± 0.07	0.23 ± 0.06	0.58 ± 0.15	0.14 ± 0.05
Irreducible Bkg.	1.7 ± 0.8	1.6 ± 0.6	0.62 ± 0.21	4.8 ± 1.8	1.1 ± 0.4
Reducible Bkg.	$0^{+0.16}_{-0}$	$0.05^{+0.14}_{-0.05}$	1.4 ± 1.3	$0^{+0.14}_{-0}$	$0.3^{+1.0}_{-0.3}$
Total Bkg.	1.7 ± 0.8	1.6 ± 0.6	2.0 ± 1.3	4.8 ± 1.8	1.3 ^{+1.0} _{-0.5}
Data	2	1	4	8	3
p ₀ -value	0.29	0.5	0.15	0.08	0.13
N _{signal} Excluded (exp)	3.9	3.6	5.3	6.7	4.5
N _{signal} Excluded (obs)	4.7	3.7	7.5	10.4	6.5
$\sigma_{ ext{visible}}$ Excluded (exp) [fb]	0.19	0.17	0.26	0.32	0.22
$\sigma_{ ext{visible}}$ Excluded (obs) [fb]	0.23	0.18	0.36	0.50	0.31

4L: Additional RPC Limits

Four Lepton Analysis (RPV)

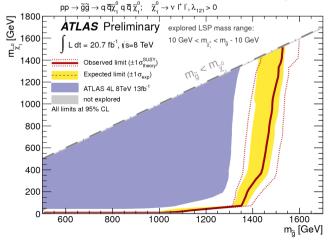

Two additional SR targeting RPV scenarios; use:

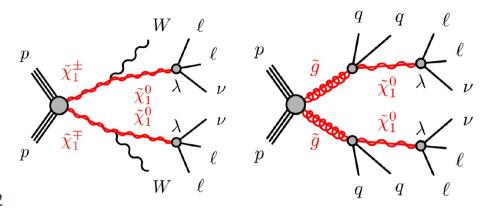
$$m_{\mathrm{eff}} = E_{\mathrm{T}}^{\mathrm{miss}} + \sum_{\mu} p_{\mathrm{T}}^{\mu} + \sum_{e} p_{\mathrm{T}}^{e} + \sum_{\tau} p_{\mathrm{T}}^{\tau} + \sum_{i} p_{\mathrm{T}}^{j}$$

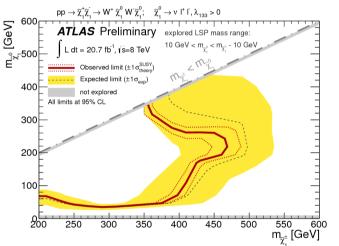
- Consider two cases for RPC NLSP pair-production:
 - Wino-like
 - Gluino (not EWK)
- Bino-like N_1 LSP then promptly decays to LLv
- Two small Yukawa couplings considered:

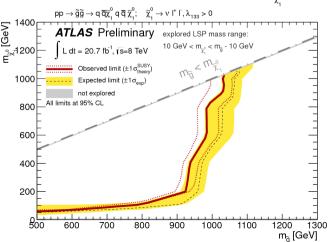
$$\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k + \kappa_iL_iH_2$$

• λ₁₂₁≠0: **e**, **μ** FS; λ₁₃₃≠0: **e**, **τ** FS




See talk by W. Ehrenfeld for more details


Stronger limits


than in RPC

scenarios

20