

Development of inner tracking systems equipped with CMOS pixel sensors for future colliders

Outline:

- Introduction
- The state-of-the-art CMOS sensors and their applications
- Evolution of the technology
- New prototype performances
- Conclusion and outlook

Isabelle Ripp-Baudot
IPHC Strasbourg, CNRS/IN2P3 and Université de Strasbourg
on behalf of the PICSEL group: http://www.iphc.cnrs.fr/PICSEL

Pixellated inner trackers

• Added value of designing fully pixellated inner trackers. cf. ALICE-ITS upgrade. Experimental environment: B=0.5 T, high hit rate, low momentum tracks.

- Constraints when designing sensors for an inner tracker:
 - Performances: spatial resolution, read-out speed, radiation hardness, material budget (power dissipation).
 - Cost.

But also: flexibility to choose the best suited performances to each detection layer:

- Low radius layers: specifications governed by occupancy rate.
- · High radius layers: spec. governed by power consumption.
- CMOS pixel sensors present attractive performances for inner trackers

MIMOSA 0.35 µm CMOS pixel sensors

- CMOS pixel sensor (CPS) features:
 - Monolithic: signal sensing and analogue processing in pixel array.
 - Very thin: sensitive layer 10-20 μ m, total thickness < 50 μ m.
 - High granularity: square or elongated pixels.
- The state-of-the art in HEP: MIMOSA series
 - 0.35 μm OPTO process.
 - · Partially undepleted.

• Architecture:

- In-pixel pre-amplification and CDS.
- End-of-column discrimination, binary charge encoding and 0 suppression.
- Column parallel rolling shutter read-out integration time = # rows × row read-out time (100-200 ns).
- ricle rate to be read out and the power dissipation.

Pixel matrix Row se Digitization stage 0-suppression stage Memory + output

Advantages and performances:

- Industrial mass production: excellent manufacturing yields, low costs, technology evolution.
- Detection efficiency ~ 100 % with very low fake rate ~ 10⁻⁵.
- Read-out time: $O(100 \, \mu s)$, suited to > $10^6 \, particles/cm^2/s$.
- Running conditions: from «0 °C to 40 °C.
- Low power consumption: 150-250 mW/cm² → further allows low material budget.
- Low material budget: 0.2 % 0.5 % X₀.
- Radiation tolerance: 0.1-1 MRad + 10^{12} - 10^{14} n_{eq} /cm² depending on T°, read-out time, pitch.

Current applications

- MIMOSA sensors have already been chosen by several projects:
 - EUDET Beam Telescope of the FP6 project: operating since 2008.
 - · Hadrontherapy: FIRST (GSI), dose monitoring (Lyon, Strasbourg).
 - STAR @ RHIC: PXL detector → ~1/3 installed in May 2013.
 One month commissioning run completed.
 First vertex detector equipped with CMOS pixel sensors.

- Pitch: 20.7×20.7 μm².
- · Binary output.
- Power consumption ~ I50 mW/cm².
- Air flow cooling.
- $t_{r.o.} \sim 200 \ \mu s.$

- → Measured performances:
 - N ~ 15 e- ENC at T°= 35 °C.
 - $\sigma_{\text{s.p.}} \gtrsim 3.5 \ \mu\text{m}$.
 - Radiation tolerance validated:
 3×10¹² n_{eq}/cm² + 150 kRad at 35 °C.

Future experiments

- Now CPS are also being considered by forthcoming projects (e⁺e⁻, heavy ions collisions):
 - ALICE @ LHC: baseline to equip the entire upgraded ITS (~10 m²).
 - CBM @ FAIR: data taking > 2016 (SIS-100).
 - · ILD @ ILC: option to equip the VD.
 - BES-3 @ BEPC: option to equip an inner tracker.

	σ_{single} point	read-out time	TID	Fluence n _{eq} /cm ²	$T_{coolant}$ $^{\circ}C$
STAR-PXL	5 μm	~200 µs	I50 kRad	3×10 ¹²	30
future projects	3-5 µm	I-30 μs	up to 10 MRad	up to 10 ¹⁴	< 0 - 30

Considering: hit rate, data flow and trigger rate:

Correlation between all specifications + strong dependence on the extrapolated track quality

- → a global design of the inner tracking system geometry enables to go beyond current technology limits.
 - Next generation of experiments call for higher read-out speed and radiation tolerance:
 - Smaller feature size technology: switch to 0.18 μm.
 - Higher epitaxial layer resistivity.

Evolution of the technology

- Performances of monolithic planar technology: global optimisation of all functionalities: sensing, analogue amplification, digital treatment.
 Specifications are not driven by HEP but by commercial concerns.
 - → full potential of CPS for HEP not reached yet.
- Path defined to improve radiation hardness and to accelerate read-out speed while keeping low power consumption:
 - Parallelised rolling shutter: sensor divided in sub-arrays read out in //, and several rows read out in //.
 - Elongated pixels: thanks to excellent charge collection.
 - Smarter pixels: row read-out fasten to 100 ns with in-pixel digitization thanks to smaller feature size.
 - Binary signal transmission: to maintain power consumption low.
 - High resistivity epitaxial layer.
- Pixel dimension increased in that direction ‡: less rows to be read.
- r.o. time = # rows × row read-out time (100 ns)
- → higher read-out speed.
- Pixel dimension increased in that direction ↔: less pixels in a row.
 - → limited power consumption.

0.18 µm sensor prototypes

- TowerJazz[®] CIS 0.18 μm process:
 - Epitaxy: 18 μ m thick, high resistivity 1-5 k Ω .cm.
 - Quadruple well.
 - Up to 6 metal layers.

- Explore pixel sizes: 20x20, 20x40 and 20x80 μm².
- Explore charge amplification and collection system:
 diode sizes ~9-15 μm², NMOS and PMOS transistor based amplifiers.
- Explore discrimination: I discriminator at each column end, in-pixel discrimination.
- Integration time = $32 \mu s$ (per sub-matrix).

- T_{coolant} = 15, 20 and 30 °C.
- Total Ionising Doses: I and 3 MRad.
- Non-ionising fluences: $0.3 1.0 3.0 \times 10^{13} \text{ n}_{eq}/\text{cm}^2$.
- Combined irradiations: up to I MRad + 10^{13} n_{eq}/cm^2 .

- Validation of the charge collection performances, before and after irradiation.
- Validate the different steps required for a final sensor: enlarged pixels, in-pixel discri, parallelised rolling-shutter.

0.18 µm sensor test results

- Charge collection:
 - High resistivity confirmed, limited thermal diffusion and total charge collected within 4 pixels.
 - Deep P-well does not parasite charge collection.
- Radiation hardness:
 - Irradiation has no impact on charge collection even at 30 °C.
 Signal not degraded by traps induced by bulk damages after NI rad.
 - · Evolution of noise with fluence is a typical effect of leakage current.
- Impact of pixel dimension:
 - Square pixels: detection ε ~ 100 % even at 30 °C and after combined I+NI irradiation.
 - Elongated 20x40 μm^2 pixels: still detection $\epsilon \geq 99$ % at 15 °C (~ 98 % at 30 °C) after combined I+NI irradiation.

Conclusion and outlook

- CMOS pixel sensors (CPS) are a mature technology to equip high performances inner trackers whose specifications are governed by spatial resolution, material budget, power dissipation and cost.
- The STAR-PXL detector is the first operating vertex detector equipped with CMOS pixel sensors:
 CPS well suited for tracker innermost layers.
 - The ALICE-ITS upgrade is based on CPS: CPS also well suited to equip a complete inner tracker.
- Exploration of 0.18 μm technology, to design CPS aiming at equipping future inner trackers (upgrade of ALICE-ITS, CBM-MVD, etc.):
 - 2011-12: Charge collection performances and radiation hardness validation.
 - 2013-14: Architecture validation.
 - 2014-16: MISTRAL (30 μs read-out time) and ASTRAL (15 μs r.o. time).
- CPS new 2D-technologies, with deep sub-micronic feature size, thicker epitaxy and higher resistivity offer conditions of a potential breakthrough in performances:
 - integration time $\sim 1 \mu s$.
 - radiation hardness up to 10 MRad + 10¹⁴ n_{eq}/cm².
 - \rightarrow open the door to future possible applications: X-ray imaging. and motivate further performance improvement: applications to HL-LHC with $t_{r.o.} << 1 \mu s$.

