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The ATLAS Detector

⋆ EM calorimeter and tracking up to ∣η∣ < 2.5 ⇒ electrons

⋆ Muon spectrometer up to ∣η∣ < 2.7, trigger coverage to ∣η∣ < 2.4 ⇒ muons

⋆ Calorimetric coverage up to ∣η∣ < 4.9 ⇒ jets, Emiss
T , forward electrons
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W and Z production at LHC

Drell-Yan production of W and Z bosons calculable to high orders in pQCD

Inclusive W&Z Production
Drell-Yan production of W± and Z bosons with decay in the electron
and muon decay channels reach already now ∼ 1% level accuracy

Need most accurate theory predictions at NNLO to match experimental
precision, e.g. total cross sections calculated with FEWZ using
MSTW2008NNLO

σNNLO
W+→!+ν = 6.16 nb σNNLO

W −→!−ν̄ = 4.30 nb σNNLO
Z/γ∗→!! = 0.96 nb

Error estimate from PDF@90%CL, αs and scale uncertainties is ∼ 5%;
only considering PDF@68%CL gives ∼ 2%

Measurement differential in boson rapidity y → x dependence:
x1,2 = M/

√
s · exp(±y)

Jan Kretzschmar, 4.7.2011 – p.7

⋆ Integrated and rapidity-dependent cross-sections
√

Testing ground for Parton Distribution Functions (PDFs)

⋆ Boson pT and φ∗ measurements
√

Test of resummation and perturbative QCD (pQCD)

⋆ High mass Drell-Yan cross-section
√

Tests of pQCD, EW corrections, γ-induced processes,
sensitive to poorly known q̄ PDF at large-x

⋆ Forward-backward Z asymmetry measurement
√

Measurement of sin2θeff
W

⋆ Angular distributions in W → `ν decays
√

Measurements of W and τ polarizations
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W , Z inclusive cross-sections

HERA and ATLAS W,Z data is fit with the HERAFITTER framework
(Q2

0 = 1.9 GeV 2, mc = 1.4 GeV , mb = 4.75 GeV , αs(MZ ) = 0.1176)

⋆ Fits are run with fixed s̄/d̄ = 0.5 and
leaving s̄(x) free (with s = s̄)

⋆ The “free s̄ fit” leads to better χ2

to ATLAS data and determines
rs = 0.5(s + s̄)/d̄ = 1.00+0.25

−0.28
sr
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Phys. Rev. D85 (2012) 072004,Phys.Rev.Lett. 109 (2012) 012001

↪ More on PDFs from V. Radescu’s talk in QCD session

http://prd.aps.org/abstract/PRD/v85/i7/e072004
http://prl.aps.org/abstract/PRL/v109/i1/e012001


W and Z pT measurements

⋆ Boson pT in Z → `` decays

⋆ Precision still statistically limited

⋆ Systematic uncertainty in 2 − 5%
range
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⋆ Boson pT in W → `ν decays

⋆ Uncertainty dominated by
systematics, in the range 2 − 5%
for pT < 100GeV
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Looking for an improvement especially in the low-pT region (pT < mZ ) ...
(important to test resummation calculations, eg. Higgs momentum predictions)

M. Bellomo W and Z/γ∗ physics in ATLAS 17-24 July, 2013 5 / 17

Phys.Rev. D85 (2012) 012005, Phys.Lett. B705 (2011) 415-434

http://prd.aps.org/abstract/PRD/v85/i1/e012005
http://www.sciencedirect.com/science/article/pii/S0370269311012627


Z → `` cross-section vs. φ∗

⋆ Measurement of an angular observable ∝ pZ
T /m``

φ∗ ≡ tan(φacop/2) ⋅ sin(θ∗η)
√

Depends only on tracks direction ⇒ smaller sensitivity to experimental syst.
√

Probes the same physics as pZ
T ⇒ φ∗ in (0,1) probes pZ

T up to 100 GeV
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Phys. Lett. B 720 (2013) 32-51

http://www.sciencedirect.com/science/article/pii/S0370269313000956


Z → `` cross-section vs. φ∗

⋆ Measurement of an angular
observable ∝ pZ

T /m``

φ∗ ≡ tan(φacop/2) ⋅ sin(θ∗η)

⋆ Measurements done in electron and
muon channels

⋆ Cross-sections are measured for
p`T > 20GeV , ∣η`∣ < 2.4 and
66 < m`` < 116GeV

⋆ Multi-jet background derived from
data fitting the Z lineshape

⋆ Total background very small, ∼ 0.6%
⇒ high-precision measurement
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⋆ Systematics at 0.1 − 0.3% level, smaller than statistical uncertainty (0.3%)
√

Backgrounds, angular resolution, unfolding, MC statistical uncertainty,
QED FSR uncertainty ... all effects at ∼ 0.1 level
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Phys. Lett. B 720 (2013) 32-51

http://www.sciencedirect.com/science/article/pii/S0370269313000956


Z → `` cross-section vs. φ∗

⋆ Comparison to MC predictions and NNLL calculations
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http://www.sciencedirect.com/science/article/pii/S0370269313000956


High mass Drell-Yan cross-sections

⋆ Cross-sections are measured for
p`T > 25GeV , ∣η`∣ < 2.5 and
116 < m`` < 1500GeV

⋆ Main backgrounds from dijet
and W+jets (6-16%), derived
from data measuring the
jet-to-electron fake rate in
jet-enriched control sample
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(plus backgrounds)
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arXiv:1305.4192

http://arxiv.org/abs/1305.4192


High mass Drell-Yan cross-sections
⋆ Systematic uncertainty (4.2 − 9.8%) dominated by electron calibration and

efficiencies, statistically dominated for mee > 400GeV
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⋆ Data compared to NNLO QCD FEWZ calculations, including NLO EW
corrections, and with different NNLO PDFs
√

γ-induced contribution (1 − 8%) and real W , Z FSR (0.1 − 2%) also included
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Forward-backward Z asymmetry measurement

⋆ Measurement of AFB in Z → `` decays ⇒ extraction of sin2θeff
W

⋆ Electrons selected with ET > 25GeV in central (∣η∣ < 2.47) and forward
(2.5 < ∣η∣ < 4.9) regions

⋆ Muons from inner tracker and muon-spectrometer measurements selected
with pT > 20GeV and ∣η∣ < 2.4
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ATLAS-CONF-2013-043

“CC” = two central electrons, “CF” = one central and one forward electron

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-043/


Forward-backward Z asymmetry measurement

⋆ Electrons selected with ET > 25GeV in central (∣η∣ < 2.47) and forward
(2.5 < ∣η∣ < 4.9) regions
√

“Forward” electrons important to reconstruct Z events at large rapidity where
direction of incoming quark is better determined

√

AFB is already visible from the reco-level distribution
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ATLAS-CONF-2013-043

cosθ∗CS for central-forward electrons in Collins-Soper frame

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-043/


Forward-backward Z asymmetry measurement

⋆ Bayesian unfolded AFB spectrum compared to PYTHIA prediction including
QED FSR and NLO QCD corrections
√

unfolding accounts for detector effects and QED corrections

⋆ Systematic uncertainties from unfolding (checked with a data re-weighting
procedure), MC dependence and higher order QCD and EW corrections,
PDFs, MC statistics, backgrounds and other experimental effects
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“CC” = two central electrons, “CF” = one central and one forward electron

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-043/


Forward-backward Z asymmetry measurement

sin2θeff
W is measured from raw AFB spectra fitting with MC templates obtained

varying the input value of the weak mixing angle

sin2θeff
W (combined) = 0.2297 ± 0.0004 (stat) ± 0.0009 (syst)

⋆ Uncertainty dominated by
PDFs, MC statistics and
electron calibration are next

Uncertainty
(×10−4)
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⋆ Precision comparable to D0 result from Tevatron

⋆ Measurement in agreement within 1.8σ with PDG global fit
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ATLAS-CONF-2013-043

http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-043/


W polarization at high pT
⋆ Helicity fractions, f0 and fL − fR , measured from angular distribution in

transverse plane: cosθ2D =
⃗p`∗T ⋅

⃗pW
T / ∣
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√

Measurements done for 35 < pW
T < 50GeV and pW

T > 50GeV regions
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⋆ fL − fR measured with 12−14% syst. uncertainty, dominated by hadronic
recoil scale uncertainty (statistical uncertainty in 6−8% range)

⋆ Results compared to NLO QCD predictions from MC@NLO, POWHEG MCs
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Eur. Phys. J. C72 (2012) 2001

http://www.springerlink.com/content/v358r2163k706543/


τ polarization in W → τν decays
⋆ First measurement at hadron collider and first probe of helicity

structure of W → τν coupling at high Q2

√

Done in hadronic τ decay channels with single charged hadron

⋆ General method based on energy sharing of charged and neutral
πs in τ decay relative to pτ,vis

T (“charged asymmetry”, Υ)

⋆ Systematic uncertainty dominated by τ and cluster energy calibrations
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⋆ Measured value in agreement with SM within uncertainties (5 − 7%)

Pτ = −1.06 ± 0.04 (stat)+0.05
−0.07 (syst) (Bayesian 95% credibility interval [−1,−0.91])
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Eur. Phys. J. C72 (2012) 2062

http://www.springerlink.com/content/3h24r0j573181876/


Summary & Outlook

W,Z Physics at LHC can be measured with very high precision

⋆ Measurements of (pseudo-)rapidity spectra of W → `ν and Z → `` decays
can lead to new insights on PDFs, hint of unsuppressed strangeness in proton
at low x from W ,Z 2010 data fitted with HERA data

⋆ Very precise measurement of φ∗ in Z → `` decay allows to make stringent
tests of resummation calculations

⋆ The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to
tests pQCD and EW corrections with sensitivity to γ-induced processes

⋆ First ATLAS measurement of sin2θeff
W analyzing AFB in Z → `` decays,

already as precise as best Tevatron result

⋆ W polarization measured in W → `ν decays at high transverse momentum
allows to test QCD calculations for better understanding of the modeling of
angular distributions

⋆ First measurement of τ polarization in W → τν decays at hadron colliders,
proof of a general methodology applicable also to Z and H bosons
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Summary & Outlook

W,Z Physics at LHC can be measured with very high precision

⋆ Measurements of (pseudo-)rapidity spectra of W → `ν and Z → `` decays
can lead to new insights on PDFs, hint of unsuppressed strangeness in proton
at low x from W ,Z 2010 data fitted with HERA data

⋆ Very precise measurement of φ∗ in Z → `` decay allows to make stringent
tests of resummation calculations

⋆ The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to
tests pQCD and EW corrections with sensitivity to γ-induced processes

⋆ First ATLAS measurement of sin2θeff
W analyzing AFB in Z → `` decays,

already as precise as best Tevatron result

⋆ W polarization measured in W → `ν decays at high transverse momentum
allows to test QCD calculations for better understanding of the modeling of
angular distributions

⋆ First measurement of τ polarization in W → τν decays at hadron colliders,
proof of a general methodology applicable also to Z and H bosons
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More to come “soon” with 2011 dataset and then 8 TeV collisions ...



Back-up slides
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LHC runs

⋆ LHC delivered p − p collision data in
three runs at 7 and 8 TeV c.m.e.

⋆ 2011 7 TeV and then 2012 8 TeV
datasets (will) allow for precise
measurements of W,Z physics
properties and the determination of
multiple differential cross-sections
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W → `ν selection

⋆ Single lepton triggers
with high efficiency

⋆ pT ,l > 20GeV
∣ηe ∣ < 2.47, ∣ηµ∣ < 2.4
(elec. excl. calo crack)
isolated leptons
Emiss
T > 25GeV

mT > 40GeV

⋆ QCD from data fitting
Emiss

T (e) and studying
control regions in
iso − Emiss

T plane (µ)

⋆ 131 − 140K candidates
with 7−9 % background
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Z → `` selection

⋆ Single lepton triggers
with high efficiency

⋆ pT ,l > 20GeV
∣ηe ∣ < 2.47, ∣ηµ∣ < 2.4
(elec. excl. calo crack)
isolated leptons
opposite charge
66 < m`,` < 116GeV

⋆ QCD from data fitting
m`,` lineshape and
studying control regions
in (iso,m`,`)

⋆ ∼ 10 − 12K candidates
with 1−2 % background
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Precision of W and Z cross-sections with L = 35pb−1

⋆ δσW→eν of 1.8 − 2.0 %, dominated
by electron reconstruction,
identification and Emiss

T

⋆ δσZ→ee of 2.7 %, dominated by el.
reconstruction and identification

⋆ δσW→µν of 1.6 − 1.7 %, dominated
by muon efficiencies, QCD
background and Emiss

T

⋆ δσZ→µµ of 0.9 %, dominated by
muon efficiencies

Electron channels (%) W± W+ W− Z

Trigger 0.4 0.4 0.4 <0.1
Electron reconstruction 0.8 0.8 0.8 1.6
Electron identification 0.9 0.8 1.1 1.8
Electron isolation 0.3 0.3 0.3 —
Electron energy scale and resol. 0.5 0.5 0.5 0.2
Non-operational LAr channels 0.4 0.4 0.4 0.8
Charge misidentification 0.0 0.1 0.1 0.6
QCD background 0.4 0.4 0.4 0.7
Electroweak+tt̄ background 0.2 0.2 0.2 <0.1

Emiss
T

scale and resolution 0.8 0.7 1.0 —

Pile-up modeling 0.3 0.3 0.3 0.3
Vertex position 0.1 0.1 0.1 0.1
CW /Z theoretical uncertainty 0.6 0.6 0.6 0.3

Total experimental uncertainty 1.8 1.8 2.0 2.7
AW /Z theoretical uncertainty 1.5 1.7 2.0 2.0

Total excluding luminosity 2.3 2.4 2.8 3.3

Luminosity 3.4

Muon channels (%) W± W+ W− Z

Trigger 0.5 0.5 0.5 0.1
Muon reconstruction 0.3 0.3 0.3 0.6
Muon isolation 0.2 0.2 0.2 0.3
Muon pT resolution 0.04 0.03 0.05 0.02
Muon pT scale 0.4 0.6 0.6 0.2
QCD background 0.6 0.5 0.8 0.3
Electroweak+tt̄ background 0.4 0.3 0.4 0.02

Emiss
T

resolution and scale 0.5 0.4 0.6 -

Pile-up modeling 0.3 0.3 0.3 0.3
Vertex position 0.1 0.1 0.1 0.1
CW /Z theoretical uncertainty 0.8 0.8 0.7 0.3

Total experimental uncertainty 1.6 1.7 1.7 0.9
AW /Z theoretical uncertainty 1.5 1.6 2.1 2.0

Total excluding luminosity 2.1 2.3 2.6 2.2

Luminosity 3.4
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W and Z cross-sections with L = 35pb−1 vs. Theory

⋆ Comparing in the fiducial region disentangles theor. and exp. effects

⋆ This enables more interesting comparisons among different PDF sets

⋆ First dedicated calculation of NNLO predictions based on FEWZ and
DYNNLO with experimental cuts
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W and Z cross-sections with L = 35pb−1 vs. Theory /2

⋆ W ±
/Z , W +

/W − ratios profit from exp. and theor. systematics cancellation

⋆ W ±
/Z ratio measured with total uncert. of 1.5 %, W +

/W − with 1.7 %
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W and Z cross-sections with L = 35pb−1 vs. Theory /3
⋆ New measurements of the ratios of the e and µ branching fractions

RW =
σe

W

σµ
W

=
Br(W → eν)

Br(W → µν)
= 1.006 ± 0.004 (sta) ± 0.006 (unc) ± 0.023 (cor) = 1.006 ± 0.024

RZ =
σe

Z

σµ
Z

=
Br(Z → ee)

Br(Z → µµ)
= 1.018 ± 0.014 (sta) ± 0.016 (unc) ± 0.028 (cor) = 1.018 ± 0.031

⋆ Inserting RZ PDG value
into the present
measurement for a
combined cross section
analysis

⇒ reduction of correlated RW

systematic uncertainty

⇒ improved result of
RW = 0.999 ± 0.021.
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W and Z cross-sections with L = 35pb−1 vs. Theory /4
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⋆ e and µ measurements combined
with full covariance matrix
available (χ2

/ndf = 33.9/29)

⋆ Z rapidity coverage up to ∣y ∣ = 3.5
including the forward Z → ee

⋆ Accuracy ∼ 2 % for ∣yZ∣ < 2 and W,
∼ 6 (10)% at ∣yZ ∣ = 2.6 (3.2)
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W and Z cross-sections with L = 35pb−1 vs. Theory /4
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⋆ Overall broadly described by
predictions of NNLO PDF sets
considered

⋆ Measurements can impact on PDF
central values and uncertainties ...
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QCD analysis of W and Z data with L = 35pb−1

⋆ Little is known about light sea-quark separation at low x and, in particular,
about the strange quark distribution, s(x)
√

Flavor SU(3) symmetry suggests equal light sea-quark distributions
√

However, the strange quarks may be suppressed due to their larger mass
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Figure 1: Strange sea quark density as determined by various PDF groups (left) and ratio of the densities
to the prediction by MSTW08 (right) for the evolution starting scale Q2 = 1.9 GeV2. Note that the pre-
diction of HERAPDF1.0 shows the experimental uncertainty only and does not include model variation.
Plot by G. Watt.

1 Introduction46

The structure of the proton has been investigated at great detail using deep inelastic lepton-nucleon scat-47

tering (DIS). A vast amount of information was collected at the electron-proton collider HERA, which48

covered an unprecedented range of absolute four momentum transfers squared, Q2, from near 1 GeV2 to49

above 104 GeV2 and of Bjorken x, from near to 1 down to 10�4 in the DIS region. The measurements50

at HERA, performed by the H1 [1–6] and ZEUS collaborations [7–15], and the combination of data of51

the first running period, until 2000, termed HERA I [16], enabled an accurate determination of parton52

distribution functions (PDFs) of the proton, using fit methods based on perturbative QCD at high orders53

(pQCD).54

Neutral (NC) and charged (CC) current measurements at HERA give access to the sea quark and55

the up and down valence quark densities. The gluon density is determined at lower x from the structure56

function F2 scaling violation. It has been cross checked using recent H1 and ZEUS measurements of the57

structure function FL [17–19]. The contributions of heavy flavours, charm and beauty, to the inclusive58

scattering cross section in DIS can be determined using results with c and b-quark production tagged in59

the hadronic final state [20]. The analysis of the final HERA data is still in progress.60

The lepton-nucleon scattering data from HERA can be complemented by the measurements at pp61

(pd) and pp̄ experiments which measure Drell-Yan [21] [22–25] and jet production [26, 27]. Such mea-62

surements provide extra information on the d̄/ū and the gluon density at high x. There are data from63

fixed target DIS experiments. The proton target data are, apart from special regions or goals, essentially64

overtaken by HERA with its wider range and recent high precision. The nuclear target data, while com-65

plementing l p data, have the disadvantage of nuclear corrections which diminishes their value for the66

determination of PDFs.67

The parton distribution functions are determined from fits to data using the QCD evolution equations68

at NLO and NNLO [28–33]. These analyses [16, 34–37] provide a comprehensive view on the proton69

structure which enable accurate prediction of various processes at the LHC.70

However the picture of the proton structure is not complete. Little is known about the light sea-71

quark separation at low x. In particular, very little information exists on the strange quark distribution72

s(x,Q2). The current results of various PDF fit groups on s + s are shown in Fig. 1 which reflect the73

sparse experimental information available to constrain the strange sea. The only region of x, in which74

the various determinations exhibit some precision, is around x ' 0.1. In this range, di-muon data from75
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Figure 2: Ratio of the strange over down quark sea density, 0.5(s(x)+ s̄(x))/d̄(x), shown for different
PDF sets for Q2 = 1.9 GeV2.

the NuTeV [38] and CCFR neutrino scattering experiments provide certain constraints to the strange and76

the anti-strange densities through the subprocesses W+s ! c and W�s ! c. Recent fits include also the77

TeVatron W charge asymmetry and Z cross section data which are sensitive also at about x ' 0.1. The78

effect of these on the strange density, however, is not large. For central rapidity yW = 0, for example, the79

cs contribution to W+ production is about 30 % in pp collisions at the LHC, but is only about 10 % in80

pp collisions at the TeVatron.81

The treatment of the strange density in fits by different groups differs. The CTEQ6 [35] and CT10 [39]82

sets parameterise xs(x) in the standard CTEQ form keeping the low-x power of x fixed and common to83

the light anti-quarks. They assume s = s and introduce c2 penalties to avoid that the ratio (s+ s)/(u+d)84

becomes too large at low x. The CT10 ansatz is more flexible than the one of CTEQ6 and consequently85

the strange density uncertainty is enlarged. The MSTW08 set [34] separates s + s and s� s, mainly86

because a positive difference was promising to reduce the NuTeV anomaly in the determination of the87

weak mixing angle. However, the s� s difference is small. The parameterisation of s+ s is related to the88

total light sea in that only the normalisation and the power of (1�x) are freely determined. The NNPDF89

group [36, 40] determines the strange distribution independently of any other light sea quark. Similarly,90

the ABKM09 [41] set, assuming s = s, use xs = Axb(1� x)b and determines A, a and b freely. The JR91

group assumes (s+ s)/(u+d) = 1/2 [37]. HERA NC and CC data have no significant sensitivity to the92

strange density at low x, where s is masked by the anti-down quark density in F2. The HERAPDF1.093

set [16] therefore links both distributions as s = rsd, with rs = fs/(1� fs) where fs = 0.31+0.07
�0.08 is the94

range of parameter values used. Since at low x one assumes u = d and also s = s, such a relation is95

equivalent to demanding s+ s = rs(u+d) as has been often used in previous fits to HERA data [3].96

Fig. 1 illustrates that the various fits result in a wide spread of expectations on the strange contents97

of the proton. Fig.. 2 shows ratio of the strange to down quark sea density. The largest fraction of98

strangeness is predicted by CT10, about three times higher than NNPDF at x ' 0.05. An envelope of all99

PDFs and their uncertainties would suggest that s+ s below x about 0.01 may be zero or on the contrary100

be rather large. Obviously new data are needed to gain insight in the behaviour of the strange and the101

⋆ s(x), s̄(x) accessed in CC ν-scattering (W +s → c , W −s̄ → c̄) at x ∼ 0.1 and
Q2

∼ 10 GeV2 by the NuTeV and CCFR experiments
√

Uncertainties from charm fragmentation and nuclear corrections
√

Results are compatible with either suppressed and unsuppressed strangeness
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QCD analysis of W and Z data with L = 35pb−1

⋆ Little is known about light sea-quark separation at low x and, in particular,
about the strange quark distribution, s(x)
√

Flavor SU(3) symmetry suggests equal light sea-quark distributions
√

However, the strange quarks may be suppressed due to their larger mass

⋆ Recent HERMES kaon multiplicity data point to a strong x dependence of
s(x) and rather large value of x(s + s̄) at x ∼ 0.04 and Q2 1.3 GeV2

Data interpretation depends on
the knowledge of the
fragmentation of strange
quarks to K mesons at low Q2
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Figure 13: Ratio of the predictions from the fit with free fs and the fit with fixed fs = 0.31 for yZ (left),
h`+ (center) and h`� (right) distributions.
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fit for S(x) = x�0.924e�x/0.0404(1�x), the dashed curve gives xS(x) from CTEQ6L and the dot-dash curve
is the sum of light antiquarks from CTEQ6L (plot from [42]).

As a first cross check we performed a fit in which the relative normalisation of the ATLAS Z data were331

allowed to vary relative to W± for a fixed value of fs = 0.484. This fit yields consistent normalisations332

for the Z and W± data: anorm. Z = (3.0±1.1)% and anorm W = (3.4±1.1)%.333

An assumption that the strange sea quark density follows the same shape as the down quark density
does not need to hold, especially at high x. An alternative shape is suggested by the data from the HER-
MES experiment which measure semi-inclusive production of the strange mesons [42]. The HERMES
analysis suggests a strong suppression of the strange density at high x with a steep turn-on and large
value at low x, see Fig. 14. Inspired by this behaviour, the strange density was parameterised as

xs(x) = fs
1

1+ tanh [�(x� xhs)hhr]
, (33)

with xhs = 0.07 and hhr = 20, corresponding to a sharp turn on of the strange density at x ⇠ 0.07. A334

fit using the HERMES shape gives a comparable c2/NDF, and fs turns out to be compatible with the335

standard fs free fit.336

⋆ Nucleon strange density plays an important role in a wide range of physics
√

From measurements at p-p colliders of W + c production and mW to
formation of strange matter and neutrino interactions at ultrahigh energies
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QCD analysis of W and Z data with L = 35pb−1

⋆ HERA and ATLAS W,Z data is fit with the HERAFITTER framework
with Q2

0 1.9 GeV2, mc 1.4 GeV, mb 4.75 GeV, αs(MZ) 0.1176

⋆ Fits are run with fixed s̄/d̄ = 0.5 and leaving s̄(x) free (with s = s̄)

⋆ The “free s̄ fit” leads to better χ2 to ATLAS data and determines

rs = 0.5(s + s̄)/d̄ = 1.00 ± 0.20 exp ± 0.07 mod+0.10
−0.15 par+0.06

−0.07 αS ± 0.08 th
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QCD analysis of W and Z data with L = 35pb−1

⋆ Fitted rs value is compared to
NNLO PDFs

⋆ Increase in strange leads to decrease
in ū, d̄ given the precise constrain
given by F2 HERA data at low x ,
total sea (Σ) increases by 8%

⋆ The prediction with “free s̄ fit”
leads to a better description of the
measured W /Z ratio
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W+D cross-section measurement
⋆ Handle on strange quark PDF at x ∼ 0.01 (eg. important for W mass)

√

SU(3) flavour, symmetric light quark sea? or due to strange mass, strange
suppression? dependence on x? s − s̄ asymmetry?

⋆ Exclusive reconstruction of four
D(

∗
)
+ decay channels exploiting the

lepton-D charge correlation: OS-SS
subtraction ⇒ fit sig/bkg templates
⇒ unfold
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Boson pT measurements in W → `ν and Z → `` decays

⋆ Boson pT in Z → `` decays
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Boson pT measurements in W → `ν and Z → `` decays

⋆ Uncertainties
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Boson pT measurements in W → `ν and Z → `` decays

⋆ Comparison of measurements with 2010 data
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Z boson φ∗ definition

⋆ Angular observable ∝ pZ
T /m`` ⇒ φ∗ ≡ tan(φacop/2) ⋅ sin(θ∗η)

(defined in A. Banfi et al., Eur. Phys. J. C 71 (2011) 1600)
√

φacop ≡ π−∆φ, ∆φ being the azimuthal opening angle between the two leptons
√

cos(θ∗η) ≡ tanh[(η− − η+)/2] is a measure of the scattering angle of the
leptons with respect to the proton beam direction in the rest frame of the
dilepton system.

2 A. Banfi et al.: Optimisation of variables for studying dilepton transverse momentum distributions . . .

shown in [14] to be less correlated with aT than QT . For
studying the low QT (non-perturbative) region, aT is thus
a more powerful variable than QT . The aT distribution has
subsequently been calculated to NLL accuracy using soft
gluon resummation techniques [15].

Ta

La

(2)
T

p(1)
T

p TQ
φΔ

acopφ

 t 
Recoil

Fig. 1. Graphical illustration in the plane transverse to the
beam direction of the variables defined in the text and used to
analyse dilepton transverse momentum distributions in hadron
colliders.

A recent paper [16] has discussed the idea of using ∆φ,
as an analysing variable that is sensitive to the physics
of QT , and insusceptible to lepton momentum uncertain-
ties1. Whilst ∆φ is primarily sensitive to the same compo-
nent of QT as aT , the translation from aT to ∆φ depends
on the scattering angle θ∗ of the leptons relative to the
beam direction in the dilepton rest frame. Thus, ∆φ is
less directly related to QT than aT . As a result, ∆φ has
somewhat smaller statistical sensitivity to the underlying
physics than aT .

In this paper, we discuss two further ideas to improve
experimental precision, whilst maintaining (QT ) physics
sensitivity:

– Dividing aT , and QT by the dilepton invariant mass,
Q, thus further reducing the effects of lepton pT res-
olution, and almost totally cancelling lepton pT scale
calibration uncertainties.

– Correcting ∆φ on an event-by-event basis for the scat-
tering angle, θ∗, thus improving the sensitivity to QT .

An overview of the rest of this paper is as follows. In
Sect. 2 we give an approximate analytic motivation for the
idea of dividing aT (and QT ) by Q in order to produce
variables with very substantially improved experimental
resolution. In Sect. 3 we discuss the idea of correcting ∆φ
on an event-by-event basis for the scattering angle, θ∗,
thus improving the sensitivity to QT . In addition, we pro-
pose a new variable, cos(θ∗

η), which provides a measure
of the scattering angle that is based entirely on the mea-
sured track directions and is thus extremely well measured
experimentally. In Sect. 4 we describe the simple param-
eterised detector simulation we employ in our MC stud-

1 We note that the expected distribution of ∆φ does have a
small residual sensitivity to the lepton pT measurement. This
arises from the cut on Q in the event sample selection, which
is affected by the lepton pT scale and resolution.

ies. In Sect. 5–9 we present the results of our MC studies
of the performance of the various candidate variables in
terms of their experimental resolution and their sensitiv-
ity to the underlying physics. In Sect. 10 we present some
conclusions, including our recommendations for the best
variables to use in experimental studies of the transverse
momentum of dilepton pairs produced at hadron colliders.

2 Mass ratios of aT and QT

For ∆φ ≈ π, aT is given by the approximate formula

aT = 2
p
(1)
T p

(2)
T

p
(1)
T + p

(2)
T

sin ∆φ

and thus the fractional change in aT with respect to a

variation in, say, p
(1)
T is given by

∆aT

aT
=

p
(2)
T

p
(1)
T + p

(2)
T

∆p
(1)
T

p
(1)
T

.

The dilepton invariant mass is given by

Q =
√

2p(1)p(2)(1 − cos∆θ),

where p(1) and p(2) are the lepton momenta and ∆θ is
the angle between the two leptons. Thus, the fractional
change in mass with respect to a variation in p(1) is given
by

∆Q

Q
=

1

2

∆p(1)

p(1)
.

Since track angles are extremely well measured it can be
taken to a very good approximation that

∆p
(1)
T

p
(1)
T

=
∆p(1)

p(1)
.

The fractional change in aT /Q with respect to a variation
in p(1) is thus given by

∆ (aT /Q)

(aT /Q)
=

∆aT

aT
− ∆Q

Q
=

(
p
(2)
T

p
(1)
T + p

(2)
T

− 1

2

)
∆p

(1)
T

p
(1)
T

.

Thus the variations with p
(1)
T in aT and Q partially

cancel in the ratio, rendering aT /Q less susceptible to the
effects of lepton pT resolution than aT . In particular, in the

region of low QT then p
(1)
T ≈ p

(2)
T and thus ∆(aT /Q) ≈ 0.

Similarly, the quantity QT /Q is less susceptible to the
effects of lepton pT resolution than QT .

A simple example of an uncertainty in the lepton pT

scale calibration is to consider the pT of all leptons to be
multiplied by a constant factor. It can be seen trivially
that in this case aT , QT and Q are all multiplied by the
same factor and that the measured aT /Q and QT /Q are
unaffected by such a scale uncertainty.

⋆ 99% of events have ∆φ > π/2

⋆ t̂ = (p1
T − p

2
T )/∣p

1
T − p

2
T ∣, p

i
T

vector in plane transverse to
beam direction

⋆
∆(aT /m``)
(aT /m``)

= ( p2
T

p1
T
+p2

T

− 1
2
) ∆p1

T

p1
T

The ratio is less sensitive to
pT uncertainties

aT /m`` ≈ tan(φacop/2)sin(θ∗), θ∗ defined with a Lorentz boost along the beam
direction such that the two leptons are back-to-back in r − θ plane. This boost
corresponds to β = tanh[(η− + η+)/2] yielding to cos(θ∗η) = tanh[(η− − η+)/2]
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Z boson φ∗ measurement
⋆ Correlation between φ∗ and boson pT
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Z boson φ∗ measurement

⋆ Comparison of φ∗ measurement in Z → `` decays to Banfi et al.
(NNLL-NLO) and FEWZ (NNLO)
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High mass Drell-Yan cross-sections

⋆ Cross-section at “dressed level” compared to MC predictions without (left)
and with (right) QCD-EW K-factors
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High mass Drell-Yan cross-sections

⋆ Purity (fraction of reconstructed events generated in the same bin) as a
function of mee
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Forward-backward Z asymmetry measurement

⋆ Distributions of cosθ∗CS for muons, central and forward electrons
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Forward-backward Z asymmetry measurement

⋆ Raw AFB distributions for muons, central and forward electrons, after
background subtraction (restricted in the region around the Z pole)
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Forward-backward Z asymmetry measurement

⋆ Raw AFB distributions for muons, central and forward electrons, after
background subtraction
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Forward-backward Z asymmetry measurement

⋆ Unfolded AFB spectrum compared to PYTHIA prediction including QED FSR
and NLO QCD corrections (not corrected also for dilution effect)
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Forward-backward Z asymmetry measurement

⋆ Fully unfolded AFB spectrum compared to PYTHIA prediction including QED
FSR and NLO QCD corrections (corrected also for dilution effect)
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W polarization at high pT
⋆ Cosine of the helicity angle of the lepton from W decay at generator-level

⋆ Solid lines are without selection, dashed lines are after all acceptance plus
mW

T cuts except the η` cuts and dotted lines are after all acceptance plus
mW

T cuts

⋆ “All events” distributions are normalised to unity
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W polarization at high pT

⋆ Representation of cosθ2D as a function of cosθ3D in events where the W
transverse momentum is greater than 50 GeV

⋆ Events are simulated with MC@NLO after acceptance and mW
T cuts
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W polarization at high pT

⋆ Results of the fits to cosθ2D distributions using helicity templates for
W → µν events with 35 < pW

T < 50GeV , after background subtraction
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W polarization at high pT

⋆ Results of the fits to cosθ2D distributions using helicity templates for W → eν
events with 35 < pW

T < 50GeV , after background subtraction

)2Dθcos(

­1 ­0.5 0 0.5 1

E
n

tr
ie

s
/0

.1

0

100

200

300

400

500
­1

 L dt = 37 pb∫
ATLAS

ν+
 e→+

W

 < 50 GeVW

T
35 < p

=7 TeV)sData (
Fit result

Left

Longitudinal

Right

)2Dθcos(

­1 ­0.5 0 0.5 1

E
n

tr
ie

s
/0

.1

0

50

100

150

200

250

300

­1
 L dt = 37 pb∫
ATLAS

ν­ e→
­

W

 < 50 GeVW

T
35 < p

=7 TeV)sData (
Fit result

Left

Longitudinal

Right

M. Bellomo W and Z/γ∗ physics in ATLAS 17-24 July, 2013 49 / 17



W polarization at high pT

⋆ Results of the fits to cosθ2D distributions using helicity templates for
W → µν events with pW

T > 50GeV , after background subtraction
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W polarization at high pT

⋆ Results of the fits to cosθ2D distributions using helicity templates for W → eν
events with pW

T > 50GeV , after background subtraction
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W polarization at high pT

⋆ Measured values of f0 and fL − fR within acceptance cuts for
35 < pW

T < 50GeV (left) and pW
T > 50GeV (right), compared to MC@NLO and

POWHEG predictions
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