Electroweak measurements
 from W and Z / γ^{*} properties with the ATLAS detector

M. Bellomo (CERN) on behalf of the ATLAS Collaboration

17-24 July, 2013

2013 European Physical Society Conference on High Energy Physics

The ATLAS Detector

* EM calorimeter and tracking up to $|\eta|<2.5 \Rightarrow$ electrons
\star Muon spectrometer up to $|\eta|<2.7$, trigger coverage to $|\eta|<2.4 \Rightarrow$ muons
\star Calorimetric coverage up to $|\eta|<4.9 \Rightarrow$ jets, $E_{\mathrm{T}}^{\text {miss }}$, forward electrons

W and Z production at LHC

Drell-Yan production of W and Z bosons calculable to high orders in pQCD

* Integrated and rapidity-dependent cross-sections
\checkmark Testing ground for Parton Distribution Functions (PDFs)
\star Boson p_{T} and ϕ^{*} measurements
\checkmark Test of resummation and perturbative QCD (pQCD)
* High mass Drell-Yan cross-section
\checkmark Tests of pQCD, EW corrections, γ-induced processes, sensitive to poorly known \bar{q} PDF at large- x
\star Forward-backward Z asymmetry measurement
\checkmark Measurement of $\sin ^{2} \theta_{W}^{e \text { eff }}$
* Angular distributions in $W \rightarrow \ell \nu$ decays
\checkmark Measurements of W and τ polarizations

W, Z inclusive cross-sections

HERA and ATLAS W,Z data is fit with the HERAFITTER framework $\left(Q_{0}^{2}=1.9 \mathrm{GeV}^{2}, m_{c}=1.4 \mathrm{GeV}, m_{b}=4.75 \mathrm{GeV}, \alpha_{s}\left(M_{z}\right)=0.1176\right)$

* Fits are run with fixed $\bar{s} / \bar{d}=0.5$ and leaving $\bar{s}(x)$ free (with $s=\bar{s}$)
\star The "free \bar{s} fit" leads to better χ^{2} to ATLAS data and determines

$$
r_{s}=0.5(s+\bar{s}) / \bar{d}=1.00_{-0.28}^{+0.25}
$$

\hookrightarrow More on PDFs from V. Radescu's talk in QCD session

W and $Z p_{T}$ measurements

\star Boson p_{T} in $Z \rightarrow \ell$ decays
\star Precision still statistically limited

* Systematic uncertainty in $2-5 \%$ range

\star Boson p_{T} in $W \rightarrow \ell \nu$ decays
\star Uncertainty dominated by systematics, in the range $2-5 \%$ for $p_{T}<100 \mathrm{GeV}$

Looking for an improvement especially in the low- p_{T} region $\left(p_{T}<m_{Z}\right) \ldots$ (important to test resummation calculations, eg. Higgs momentum predictions)
\star Measurement of an angular observable $\propto p_{T}^{Z} / m_{\ell \ell}$
$\phi^{*} \equiv \tan \left(\phi_{\text {acop }} / 2\right) \cdot \sin \left(\theta_{\eta}^{*}\right)$
\checkmark Depends only on tracks direction \Rightarrow smaller sensitivity to experimental syst.
\checkmark Probes the same physics as $p_{T}^{Z} \Rightarrow \phi^{*}$ in $(0,1)$ probes p_{T}^{Z} up to 100 GeV

\star Measurement of an angular observable $\propto p_{T}^{Z} / m_{\ell \ell}$
$\phi^{*} \equiv \tan \left(\phi_{\text {acop }} / 2\right) \cdot \sin \left(\theta_{\eta}^{*}\right)$
\star Measurements done in electron and muon channels
\star Cross-sections are measured for $p_{T}^{\ell}>20 \mathrm{GeV},\left|\eta_{\ell}\right|<2.4$ and $66<m_{\ell \ell}<116 \mathrm{GeV}$
\star Multi-jet background derived from data fitting the Z lineshape

* Total background very small, ~ 0.6\% \Rightarrow high-precision measurement

* Systematics at $0.1-0.3 \%$ level, smaller than statistical uncertainty (0.3%)
\checkmark Backgrounds, angular resolution, unfolding, MC statistical uncertainty, QED FSR uncertainty ... all effects at ~ 0.1 level
\star Comparison to MC predictions and NNLL calculations

High mass Drell-Yan cross-sections

\star Cross-sections are measured for $p_{T}^{\ell}>25 \mathrm{GeV},\left|\eta_{\ell}\right|<2.5$ and $116<m_{\ell \ell}<1500 \mathrm{GeV}$

* Main backgrounds from dijet and $\mathrm{W}+$ jets ($6-16 \%$), derived from data measuring the jet-to-electron fake rate in jet-enriched control sample

$\star Z \rightarrow$ ee spectrum measured in data compared to prediction from PYTHIA w/ NNLO QCD and NLO EW k-factors (plus backgrounds)

High mass Drell-Yan cross-sections

\star Systematic uncertainty ($4.2-9.8 \%$) dominated by electron calibration and efficiencies, statistically dominated for $m_{e e}>400 \mathrm{GeV}$

* Data compared to NNLO QCD FEWZ calculations, including NLO EW corrections, and with different NNLO PDFs
$\checkmark \gamma$-induced contribution (1-8\%) and real W, Z FSR ($0.1-2 \%$) also included

Forward-backward Z asymmetry measurement

\star Measurement of $A_{F B}$ in $Z \rightarrow \ell$ decays \Rightarrow extraction of $\sin ^{2} \theta_{W}^{\text {eff }}$

* Electrons selected with $E_{T}>25 \mathrm{GeV}$ in central $(|\eta|<2.47)$ and forward ($2.5<|\eta|<4.9$) regions
* Muons from inner tracker and muon-spectrometer measurements selected with $p_{T}>20 \mathrm{GeV}$ and $|\eta|<2.4$

"CC" = two central electrons, "CF" = one central and one forward electron

Forward-backward Z asymmetry measurement

\star Electrons selected with $E_{T}>25 \mathrm{GeV}$ in central $(|\eta|<2.47)$ and forward $(2.5<|\eta|<4.9)$ regions
\checkmark "Forward" electrons important to reconstruct Z events at large rapidity where direction of incoming quark is better determined
$\checkmark A_{F B}$ is already visible from the reco-level distribution

$\cos \theta_{C S}^{*}$ for central-forward electrons in Collins-Soper frame

Forward-backward Z asymmetry measurement

\star Bayesian unfolded $A_{F B}$ spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections
\checkmark unfolding accounts for detector effects and QED corrections

* Systematic uncertainties from unfolding (checked with a data re-weighting procedure), MC dependence and higher order QCD and EW corrections, PDFs, MC statistics, backgrounds and other experimental effects

"CC" = two central electrons, "CF" = one central and one forward electron

Forward-backward Z asymmetry measurement

$\sin ^{2} \theta_{W}^{\text {eff }}$ is measured from raw $A_{F B}$ spectra fitting with MC templates obtained varying the input value of the weak mixing angle

$$
\sin ^{2} \theta_{W}^{\text {eff }}(\text { combined })=0.2297 \pm 0.0004(\text { stat }) \pm 0.0009 \text { (syst) }
$$

* Uncertainty dominated by PDFs, MC statistics and electron calibration are next

Uncertainty $\left(\times 10^{-4}\right)$	$e_{C C}$	$e_{C F}$	μ	com
PDF	9	5	9	7
MC stat	9	5	9	4
e energy scale	4	6	-	4
e energy resol	4	5	-	3
μ momen. scale	-	-	5	2
HO corrections	3	1	3	2
Other sources	1	1	2	2

* Precision comparable to D0 result from Tevatron
* Measurement in agreement within 1.8σ with PDG global fit

W polarization at high p_{T}

\star Helicity fractions, f_{0} and $f_{L}-f_{R}$, measured from angular distribution in transverse plane: $\cos \theta_{2 D}=\overrightarrow{p_{T}^{* *}} \cdot p_{T}^{\vec{W}} /\left|\overrightarrow{p_{T}^{*} *}\right|\left|p_{T}^{\vec{W}}\right|$
\checkmark Measurements done for $35<p_{T}^{W}<50 \mathrm{GeV}$ and $p_{T}^{W}>50 \mathrm{GeV}$ regions

* $f_{L}-f_{R}$ measured with $12-14 \%$ syst. uncertainty, dominated by hadronic recoil scale uncertainty (statistical uncertainty in 6-8\% range)
* Results compared to NLO QCD predictions from MC@NLO, POWHEG MCs

τ polarization in $W \rightarrow \tau \nu$ decays

* First measurement at hadron collider and first probe of helicity structure of $W \rightarrow \tau \nu$ coupling at high Q^{2}
\checkmark Done in hadronic τ decay channels with single charged hadron
* General method based on energy sharing of charged and neutral $\pi \mathrm{s}$ in τ decay relative to $p_{T}^{\tau, \text { vis }}$ ("charged asymmetry", Υ)
* Systematic uncertainty dominated by τ and cluster energy calibrations

Source	$+\Delta P_{\tau}$	$-\Delta P_{\tau}$
Energy scale central	0.042	0.063
Energy scale forward	0.007	0.002
$E_{\mathrm{T}}^{\text {miss resolution }}$	0.014	-
No FCal	0.003	-
τ identification	0.005	0.006
Trigger	0.007	0.006
MC model	0.020	0.020
W cross-section	0.005	0.005
Z cross-section	0.006	0.006
Combined	0.05	0.07

* Measured value in agreement with SM within uncertainties (5-7\%)

$$
\left.P_{\tau}=-1.06 \pm 0.04(\text { stat })_{-0.07}^{+0.05}(s y s t) \text { (Bayesian } 95 \% \text { credibility interval }[-1,-0.91]\right)
$$

Summary \& Outlook

W,Z Physics at LHC can be measured with very high precision

* Measurements of (pseudo-)rapidity spectra of $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays can lead to new insights on PDFs, hint of unsuppressed strangeness in proton at low x from $W, Z 2010$ data fitted with HERA data
\star Very precise measurement of ϕ^{*} in $Z \rightarrow \ell$ decay allows to make stringent tests of resummation calculations
* The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to tests pQCD and EW corrections with sensitivity to γ-induced processes
\star First ATLAS measurement of $\sin ^{2} \theta_{W}^{\text {eff }}$ analyzing $A_{F B}$ in $Z \rightarrow \ell$ decays, already as precise as best Tevatron result
* W polarization measured in $W \rightarrow \ell \nu$ decays at high transverse momentum allows to test QCD calculations for better understanding of the modeling of angular distributions
\star First measurement of τ polarization in $W \rightarrow \tau \nu$ decays at hadron colliders, proof of a general methodology applicable also to Z and H bosons

Summary \& Outlook

W,Z Physics at LHC can be measured with very high precision

* Measurements of (pseudo-)rapidity spectra of $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays can lead to new insights on PDFs, hint of unsuppressed strangeness in proton at low x from $W, Z 2010$ data fitted with HERA data
\star Very precise measurement of ϕ^{*} in $Z \rightarrow \ell$ decay allows to make stringent tests of resummation calculations
* The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to tests pQCD and EW corrections with sensitivity to γ-induced processes
\star First ATLAS measurement of $\sin ^{2} \theta_{W}^{\text {eff }}$ analyzing $A_{F B}$ in $Z \rightarrow \ell$ decays, already as precise as best Tevatron result
* W polarization measured in $W \rightarrow \ell \nu$ decays at high transverse momentum allows to test QCD calculations for better understanding of the modeling of angular distributions
\star First measurement of τ polarization in $W \rightarrow \tau \nu$ decays at hadron colliders, proof of a general methodology applicable also to Z and H bosons

More to come "soon" with 2011 dataset and then 8 TeV collisions ...

Back-up slides

LHC runs

* LHC delivered $p-p$ collision data in three runs at 7 and 8 TeV c.m.e.
* 20117 TeV and then 20128 TeV datasets (will) allow for precise measurements of W, Z physics properties and the determination of multiple differential cross-sections

$W \rightarrow \ell \nu$ selection

* Single lepton triggers with high efficiency
* $p_{T, I}>20 \mathrm{GeV}$
$\left|\eta_{e}\right|<2.47,\left|\eta_{\mu}\right|<2.4$ (elec. excl. calo crack) isolated leptons
$E_{\mathrm{T}}^{\text {miss }}>25 \mathrm{GeV}$
$m_{T}>40 \mathrm{GeV}$
* QCD from data fitting $E_{T}^{\text {miss }}$ (e) and studying control regions in iso $-E_{T}^{\text {miss }}$ plane (μ)
* 131-140 K candidates with $7-9 \%$ background

$Z \rightarrow \ell \ell$ selection

* Single lepton triggers with high efficiency
* $p_{T, 1}>20 \mathrm{GeV}$ $\left|\eta_{e}\right|<2.47,\left|\eta_{\mu}\right|<2.4$ (elec. excl. calo crack) isolated leptons opposite charge $66<m_{\ell, \ell}<116 \mathrm{GeV}$
\star QCD from data fitting $m_{\ell, \ell}$ lineshape and studying control regions in (iso, $m_{\ell, \ell}$)
* $\sim 10-12 \mathrm{~K}$ candidates with $1-2 \%$ background

Precision of W and Z cross-sections with $\mathcal{L}=35 p^{-1}$

* $\delta \sigma_{W \rightarrow e \nu}$ of $1.8-2.0 \%$, dominated by electron reconstruction, identification and $E_{\mathrm{T}}^{\text {miss }}$
$\star \quad \delta \sigma_{Z \rightarrow e e}$ of 2.7%, dominated by el. reconstruction and identification

Electron channels (\%)	$W^{ \pm}$	W^{+}	W^{-}	Z
Trigger	0.4	0.4	0.4	<0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	-
Electron energy scale and resol.	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
Electroweak+ $t \bar{t}$ background	0.2	0.2	0.2	<0.1
$E_{T}^{\text {miss }}$ scale and resolution	0.8	0.7	1.0	-
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W / Z}$ theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	$\mathbf{1 . 8}$	$\mathbf{1 . 8}$	$\mathbf{2 . 0}$	$\mathbf{2 . 7}$
$A_{W / Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity	3.4			

* $\delta \sigma_{W \rightarrow \mu \nu}$ of $1.6-1.7 \%$, dominated by muon efficiencies, QCD background and $E_{\mathrm{T}}^{\text {miss }}$
$\star \quad \delta \sigma_{Z \rightarrow \mu \mu}$ of 0.9%, dominated by muon efficiencies

Muon channels (\%)	$W^{ \pm}$	W^{+}	W^{-}	Z	
Trigger	0.5	0.5	0.5	0.1	
Muon reconstruction	0.3	0.3	0.3	0.6	
Muon isolation	0.2	0.2	0.2	0.3	
Muon p_{T} resolution	0.04	0.03	0.05	0.02	
Muon p_{T} scale	0.4	0.6	0.6	0.2	
QCD background	0.6	0.5	0.8	0.3	
Electroweak $+t \bar{t}$ background	0.4	0.3	0.4	0.02	
$E_{T}^{\text {miss }}$ resolution and scale	0.5	0.4	0.6	-	
Pile-up modeling $^{\text {Vertex position }}$	0.3	0.3	0.3	0.3	
$C_{W / Z}$ theoretical uncertainty	0.1	0.1	0.1	0.1	
Total experimental uncertainty	0.8	0.8	0.7	0.3	
$A_{W / Z}$ theoretical uncertainty	1.6	$\mathbf{1 . 7}$	$\mathbf{1 . 7}$	$\mathbf{0 . 9}$	
Total excluding luminosity	2.1	1.6	2.1	2.0	
Luminosity	3.3				

W and Z cross-sections with $\mathcal{L}=35 p b^{-1}$ vs. Theory

* Comparing in the fiducial region disentangles theor. and exp. effects
\star This enables more interesting comparisons among different PDF sets
* First dedicated calculation of NNLO predictions based on FEWZ and DYNNLO with experimental cuts

W and Z cross-sections with $\mathcal{L}=35 p b^{-1}$ vs. Theory $/ 2$

$\star W^{ \pm} / Z, W^{+} / W^{-}$ratios profit from exp. and theor. systematics cancellation
$\star W^{ \pm} / Z$ ratio measured with total uncert. of $1.5 \%, W^{+} / W^{-}$with 1.7%

W and Z cross-sections with $\mathcal{L}=35 p b^{-1}$ vs. Theory $/ 3$

\star New measurements of the ratios of the e and μ branching fractions

$$
\begin{aligned}
R_{W} & =\frac{\sigma_{W}^{e}}{\sigma_{W}^{\mu}}=\frac{\operatorname{Br}(W \rightarrow e \nu)}{\operatorname{Br}(W \rightarrow \mu \nu)}=1.006 \pm 0.004(\text { sta }) \pm 0.006(\text { unc }) \pm 0.023(\text { cor })=1.006 \pm 0.024 \\
R_{Z} & =\frac{\sigma_{Z}^{e}}{\sigma_{Z}^{\mu}}=\frac{\operatorname{Br}(Z \rightarrow e e)}{\operatorname{Br}(Z \rightarrow \mu \mu)}=1.018 \pm 0.014(\text { sta }) \pm 0.016(\text { unc }) \pm 0.028(\text { cor })=1.018 \pm 0.031
\end{aligned}
$$

\star Inserting R_{Z} PDG value into the present measurement for a combined cross section analysis
\Rightarrow reduction of correlated R_{W} systematic uncertainty
\Rightarrow improved result of $R_{W}=0.999 \pm 0.021$.

W and Z cross-sections with $\mathcal{L}=35 p b^{-1}$ vs. Theory $/ 4$

* e and μ measurements combined with full covariance matrix available ($\chi^{2} / n d f=33.9 / 29$)
$\star \quad Z$ rapidity coverage up to $|y|=3.5$ including the forward $Z \rightarrow$ ee
\star Accuracy ~ 2% for $\left|y_{z}\right|<2$ and W, $\sim 6(10) \%$ at $\left|y_{z}\right|=2.6(3.2)$

W and Z cross-sections with $\mathcal{L}=35 p b^{-1}$ vs. Theory $/ 4$

* Overall broadly described by predictions of NNLO PDF sets considered
* Measurements can impact on PDF central values and uncertainties ...

QCD analysis of W and Z data with $\mathcal{L}=35 p b^{-1}$

* Little is known about light sea-quark separation at low x and, in particular, about the strange quark distribution, $s(x)$
\checkmark Flavor SU(3) symmetry suggests equal light sea-quark distributions
\checkmark However, the strange quarks may be suppressed due to their larger mass

$\star s(x), \bar{s}(x)$ accessed in CC ν-scattering ($\left.W^{+} s \rightarrow c, W^{-} \bar{s} \rightarrow \bar{c}\right)$ at $x \sim 0.1$ and $Q^{2} \sim 10 \mathrm{GeV}^{2}$ by the NuTeV and CCFR experiments
\checkmark Uncertainties from charm fragmentation and nuclear corrections
\checkmark Results are compatible with either suppressed and unsuppressed strangeness

QCD analysis of W and Z data with $\mathcal{L}=35 p b^{-1}$

* Little is known about light sea-quark separation at low x and, in particular, about the strange quark distribution, $s(x)$
\checkmark Flavor SU(3) symmetry suggests equal light sea-quark distributions
\checkmark However, the strange quarks may be suppressed due to their larger mass
* Recent HERMES kaon multiplicity data point to a strong x dependence of $s(x)$ and rather large value of $x(s+\bar{s})$ at $x \sim 0.04$ and $\mathrm{Q}^{2} 1.3 \mathrm{GeV}^{2}$

Data interpretation depends on the knowledge of the fragmentation of strange quarks to K mesons at low Q^{2}

* Nucleon strange density plays an important role in a wide range of physics
\checkmark From measurements at p-p colliders of $W+c$ production and m_{W} to formation of strange matter and neutrino interactions at ultrahigh energies

QCD analysis of W and Z data with $\mathcal{L}=35 p b^{-1}$

* HERA and ATLAS W,Z data is fit with the HERAFITTER framework with $Q_{0}^{2} 1.9 \mathrm{GeV}^{2}, m_{c} 1.4 \mathrm{GeV}, m_{b} 4.75 \mathrm{GeV}, \alpha_{s}\left(M_{Z}\right) 0.1176$
\star Fits are run with fixed $\bar{s} / \bar{d}=0.5$ and leaving $\bar{s}(x)$ free (with $s=\bar{s}$)
\star The "free \bar{s} fit" leads to better χ^{2} to ATLAS data and determines

$$
r_{s}=0.5(s+\bar{s}) / \bar{d}=1.00 \pm \mathbf{0 . 2 0} \exp \pm \mathbf{0 . 0 7} \mathbf{m o d}_{-0.15}^{+0.10} \operatorname{par}_{-0.07}^{+0.06} \alpha \mathbf{S} \pm \mathbf{0 . 0 8} \text { th }
$$

QCD analysis of W and Z data with $\mathcal{L}=35 p b^{-1}$

\star Fitted r_{s} value is compared to NNLO PDFs

* Increase in strange leads to decrease in \bar{u}, \bar{d} given the precise constrain given by F_{2} HERA data at low x, total sea (Σ) increases by 8%
\star The prediction with "free \bar{s} fit" leads to a better description of the measured W / Z ratio

W+D cross-section measurement

\star Handle on strange quark PDF at $x \sim 0.01$ (eg. important for W mass)
\checkmark SU(3) flavour, symmetric light quark sea? or due to strange mass, strange suppression? dependence on x ? $s-\bar{s}$ asymmetry?

* Exclusive reconstruction of four $D\left({ }^{*}\right)^{+}$decay channels exploiting the lepton-D charge correlation: OS-SS subtraction \Rightarrow fit sig/bkg templates \Rightarrow unfold

* epWZ $=$ HERA +ATLAS W,Z 2010 PDF

Boson p_{T} measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

\star Boson p_{T} in $Z \rightarrow \ell$ decays

\star Boson p_{T} in $W \rightarrow \ell \nu$ decays

Boson p_{T} measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

* Uncertainties

$\begin{gathered} \left\langle p_{\mathrm{T}}^{Z}\right\rangle \\ (\mathrm{GeV}) \\ \hline \end{gathered}$	$\begin{aligned} & \frac{1}{\sigma^{\ln 1 \mathrm{~d}} \frac{\mathrm{~d} \sigma^{\mathrm{nd}}}{p^{2}}} \\ & \left(\mathrm{GeV}^{-1}\right) \end{aligned}$	stat. (\%)	syst. (\%)	A_{c}^{-1}	unc. (\%)
1.3	0.0366	2.0	4.7	1.047	3.7
4.8	0.0586	1.5	3.6	1.029	1.8
7.5	0.0466	1.7	1.5	1.014	1.5
10	0.0348	1.9	1.6	0.999	1.5
13	0.0277	2.2	1.7	0.999	1.4
16	0.0210	2.5	1.7	0.990	1.5
19	0.0167	2.8	1.8	0.989	1.5
22	0.0133	3.1	1.9	0.990	1.5
25	0.0112	3.4	2.0	0.994	2.3
28	0.0092	4.0	2.1	0.988	2.3
33	0.0067	3.2	2.1	0.987	3.2
39	0.0047	3.8	2.3	0.979	3.9
45	0.0038	4.2	2.4	0.965	4.3
51	0.0030	4.9	2.5	0.950	4.4
57	0.0021	5.7	2.7	0.938	5.3
69	0.0013	4.0	2.8	0.910	5.3
89	$5.5 \cdot 10^{-4}$	6.1	3.1	0.894	5.3
132	$1.6 \cdot 10^{-4}$	5.9	3.7	0.826	5.4
245	$9.8 \cdot 10^{-6}$	15.6	5.4	0.672	5.6

Boson p_{T} measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

* Comparison of measurements with 2010 data

Z boson ϕ^{*} definition

\star Angular observable $\propto p_{T}^{Z} / m_{\ell \ell} \Rightarrow \phi^{*} \equiv \tan \left(\phi_{\text {acop }} / 2\right) \cdot \sin \left(\theta_{\eta}^{*}\right)$ (defined in A. Banfi et al., Eur. Phys. J. C 71 (2011) 1600)
$\checkmark \phi_{\text {acop }} \equiv \pi-\Delta \phi, \Delta \phi$ being the azimuthal opening angle between the two leptons
$\checkmark \cos \left(\theta_{\eta}^{*}\right) \equiv \tanh \left[\left(\eta^{-}-\eta^{+}\right) / 2\right]$ is a measure of the scattering angle of the leptons with respect to the proton beam direction in the rest frame of the dilepton system.

* 99% of events have $\Delta \phi>\pi / 2$
$\star \hat{t}=\left(p_{T}^{1}-p_{T}^{2}\right) /\left|p_{T}^{1}-p_{T}^{2}\right|, p_{T}^{i}$ vector in plane transverse to beam direction
$\star \frac{\Delta\left(a_{T} / m_{\ell \ell}\right)}{\left(a_{T} / m_{\ell \ell}\right)}=\left(\frac{p_{T}^{2}}{p_{T}^{1}+p_{T}^{2}}-\frac{1}{2}\right) \frac{\Delta p_{T}^{1}}{p_{T}^{1}}$
The ratio is less sensitive to p_{T} uncertainties
$a_{T} / m_{\ell \ell} \approx \tan \left(\phi_{\text {acop }} / 2\right) \sin \left(\theta^{*}\right), \theta^{*}$ defined with a Lorentz boost along the beam direction such that the two leptons are back-to-back in $r-\theta$ plane. This boost corresponds to $\beta=\tanh \left[\left(\eta^{-}+\eta^{+}\right) / 2\right]$ yielding to $\cos \left(\theta_{\eta}^{*}\right)=\tanh \left[\left(\eta^{-}-\eta^{+}\right) / 2\right]$

Z boson ϕ^{*} measurement

\star Correlation between ϕ^{*} and boson p_{T}

Z boson ϕ^{*} measurement

\star Comparison of ϕ^{*} measurement in $Z \rightarrow \ell \ell$ decays to Banfi et al. (NNLL-NLO) and FEWZ (NNLO)

High mass Drell-Yan cross-sections

* Cross-section at "dressed level" compared to MC predictions without (left) and with (right) QCD-EW K-factors

including FSR photons in a cone $\Delta R<0.1$

High mass Drell-Yan cross-sections

\star Purity (fraction of reconstructed events generated in the same bin) as a function of $m_{e e}$

Forward-backward Z asymmetry measurement

* Distributions of $\cos \theta_{C S}^{*}$ for muons, central and forward electrons

$A_{F B}=\frac{N_{\cos \theta_{C S}^{*} \geq 0}-N_{\cos \theta_{C}^{*}{ }^{*}<0}}{N_{\cos \theta_{C S}^{*} \geq 0}+N_{\cos \theta_{C C}^{*}<0}}$

$$
\cos \theta_{C S}^{*}=\frac{p_{z}\left(\ell^{+} \ell^{-}\right)}{\left|p_{z}\left(\ell^{+} \ell^{-}\right)\right|} \frac{2\left(p_{1}^{+} p_{2}^{-}-p_{1}^{-} p_{2}^{+}\right)}{m\left(\ell^{+} \ell^{-}\right) \sqrt{m\left(\ell^{+} \ell^{-}\right)^{2}+p_{T}\left(\ell^{+} \ell^{-}\right)^{2}}}
$$

Forward-backward Z asymmetry measurement

* Raw $A_{F B}$ distributions for muons, central and forward electrons, after background subtraction (restricted in the region around the Z pole)

Forward-backward Z asymmetry measurement

* Raw $A_{F B}$ distributions for muons, central and forward electrons, after background subtraction

Forward-backward Z asymmetry measurement

* Unfolded $A_{F B}$ spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections (not corrected also for dilution effect)

Forward-backward Z asymmetry measurement

* Fully unfolded $A_{F B}$ spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections (corrected also for dilution effect)

W polarization at high p_{T}

* Cosine of the helicity angle of the lepton from W decay at generator-level
* Solid lines are without selection, dashed lines are after all acceptance plus m_{T}^{W} cuts except the η_{ℓ} cuts and dotted lines are after all acceptance plus m_{T}^{W} cuts
* "All events" distributions are normalised to unity

W polarization at high p_{T}

\star Representation of $\cos \theta_{2 D}$ as a function of $\cos \theta_{3 D}$ in events where the W transverse momentum is greater than 50 GeV

* Events are simulated with MC@NLO after acceptance and m_{T}^{W} cuts

W polarization at high p_{T}

\star Results of the fits to $\cos \theta_{2 D}$ distributions using helicity templates for $W \rightarrow \mu \nu$ events with $35<p_{T}^{W}<50 \mathrm{GeV}$, after background subtraction

W polarization at high p_{T}

* Results of the fits to $\cos \theta_{2 D}$ distributions using helicity templates for $W \rightarrow e \nu$ events with $35<p_{T}^{W}<50 \mathrm{GeV}$, after background subtraction

W polarization at high p_{T}

\star Results of the fits to $\cos \theta_{2 D}$ distributions using helicity templates for $W \rightarrow \mu \nu$ events with $p_{T}^{W}>50 \mathrm{GeV}$, after background subtraction

W polarization at high p_{T}

\star Results of the fits to $\cos \theta_{2 D}$ distributions using helicity templates for $W \rightarrow e \nu$ events with $p_{T}^{W}>50 \mathrm{GeV}$, after background subtraction

W polarization at high p_{T}

* Measured values of f_{0} and $f_{L}-f_{R}$ within acceptance cuts for $35<p_{T}^{W}<50 \mathrm{GeV}$ (left) and $p_{T}^{W}>50 \mathrm{GeV}$ (right), compared to MC@NLO and POWHEG predictions

