Electroweak measurements from W and Z/γ^* properties with the ATLAS detector

> M. Bellomo (CERN) on behalf of the ATLAS Collaboration

> > 17-24 July, 2013

2013 European Physical Society Conference on High Energy Physics

The ATLAS Detector

- ★ EM calorimeter and tracking up to $|\eta| < 2.5 \Rightarrow$ electrons
- ★ Muon spectrometer up to $|\eta|$ < 2.7, trigger coverage to $|\eta|$ < 2.4 ⇒ muons
- $\star\,$ Calorimetric coverage up to $|\eta|$ < 4.9 \Rightarrow jets, $E_{\rm T}^{\rm miss}$, forward electrons

W and Z production at LHC

Drell-Yan production of W and Z bosons calculable to high orders in pQCD

Integrated and rapidity-dependent cross-sections

Testing ground for Parton Distribution Functions (PDFs)

- ★ Boson p_T and ϕ^* measurements
 - ✓ Test of resummation and perturbative QCD (pQCD)
- ★ High mass Drell-Yan cross-section
 - \checkmark Tests of pQCD, EW corrections, $\gamma\text{-induced processes,}$ sensitive to poorly known \bar{q} PDF at large-x
- Forward-backward Z asymmetry measurement
 - \checkmark Measurement of $sin^2 \theta_W^{eff}$
- * Angular distributions in $W \rightarrow \ell \nu$ decays
 - \checkmark Measurements of W and au polarizations

W, Z inclusive cross-sections

HERA and ATLAS W,Z data is fit with the HERAFITTER framework $(Q_0^2 = 1.9 \text{ GeV}^2, m_c = 1.4 \text{ GeV}, m_b = 4.75 \text{ GeV}, \alpha_s(M_Z) = 0.1176)$

- * Fits are run with fixed $\bar{s}/\bar{d} = 0.5$ and leaving $\bar{s}(x)$ free (with $s = \bar{s}$)
- * The "free \bar{s} fit" leads to better χ^2 to ATLAS data and determines $r_s = 0.5(s + \bar{s})/\bar{d} = 1.00^{+0.25}_{-0.28}$

 \hookrightarrow More on PDFs from V. Radescu's talk in QCD session

M. Bellomo

W and Z p_T measurements

- ★ Boson p_T in $Z \to \ell \ell$ decays
- * Precision still statistically limited
- ★ Systematic uncertainty in 2 5% range

Phys.Rev. D85 (2012) 012005, Phys.Lett. B705 (2011) 415-434

- ★ Boson p_T in $W \rightarrow \ell \nu$ decays
- Uncertainty dominated by systematics, in the range 2 – 5% for p_T < 100 GeV

Looking for an improvement especially in the low- p_T region $(p_T < m_Z)$... (important to test resummation calculations, eg. Higgs momentum predictions)

$Z \rightarrow \ell \ell$ cross-section vs. ϕ^*

* Measurement of an angular observable $\propto p_T^Z/m_{\ell\ell}$

 $\phi^* \equiv \tan(\phi_{\mathsf{acop}}/2) \cdot \sin(\theta^*_\eta)$

- $\checkmark\,$ Depends only on tracks direction \Rightarrow smaller sensitivity to experimental syst.
- ✓ Probes the same physics as $p_T^Z \Rightarrow \phi^*$ in (0,1) probes p_T^Z up to 100 GeV

$Z \rightarrow \ell \ell$ cross-section vs. ϕ^*

- * Measurement of an angular observable $\propto p_T^Z/m_{\ell\ell}$ $\phi^* \equiv tan(\phi_{acop}/2) \cdot sin(\theta_n^*)$
- * Measurements done in electron and muon channels
- * Cross-sections are measured for $p_T^{\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.4 \text{ and} 66 < m_{\ell\ell} < 116 \text{ GeV}$
- Multi-jet background derived from data fitting the Z lineshape
- ★ Total background very small, ~ 0.6%
 ⇒ high-precision measurement

- * Systematics at 0.1 0.3% level, smaller than statistical uncertainty (0.3%)
 - \checkmark Backgrounds, angular resolution, unfolding, MC statistical uncertainty, QED FSR uncertainty ... all effects at \sim 0.1 level

$Z \rightarrow \ell \ell$ cross-section vs. ϕ^*

* Comparison to MC predictions and NNLL calculations

High mass Drell-Yan cross-sections

- * Cross-sections are measured for $p_T^{\ell} > 25 \text{ GeV}$, $|\eta_{\ell}| < 2.5$ and $116 < m_{\ell\ell} < 1500 \text{ GeV}$
- Main backgrounds from dijet and W+jets (6-16%), derived from data measuring the jet-to-electron fake rate in jet-enriched control sample

 ★ Z → ee spectrum measured in data compared to prediction from PYTHIA w/ NNLO QCD and NLO EW k-factors (plus backgrounds)

arXiv:1305.4192

High mass Drell-Yan cross-sections

* Systematic uncertainty (4.2 – 9.8%) dominated by electron calibration and efficiencies, statistically dominated for $m_{ee} > 400 \text{ GeV}$

* Data compared to NNLO QCD FEWZ calculations, including NLO EW corrections, and with different NNLO PDFs

 \checkmark γ -induced contribution (1 – 8%) and real W, Z FSR (0.1 – 2%) also included

- * Measurement of A_{FB} in $Z \to \ell \ell$ decays \Rightarrow extraction of $sin^2 \theta_W^{eff}$
- * Electrons selected with $E_T > 25 \ GeV$ in central ($|\eta| < 2.47$) and forward ($2.5 < |\eta| < 4.9$) regions
- * Muons from inner tracker and muon-spectrometer measurements selected with p_T > 20 GeV and $|\eta|$ < 2.4

"CC" = two central electrons, "CF" = one central and one forward electron

M. Bellomo

- * Electrons selected with $E_T > 25 \text{ GeV}$ in central ($|\eta| < 2.47$) and forward ($2.5 < |\eta| < 4.9$) regions
 - \checkmark "Forward" electrons important to reconstruct Z events at large rapidity where direction of incoming quark is better determined
 - \checkmark A_{FB} is already visible from the reco-level distribution

 $cos\theta_{CS}^{*}$ for central-forward electrons in Collins-Soper frame

* Bayesian unfolded A_{FB} spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections

 $\checkmark\,$ unfolding accounts for detector effects and QED corrections

* Systematic uncertainties from unfolding (checked with a data re-weighting procedure), MC dependence and higher order QCD and EW corrections, PDFs, MC statistics, backgrounds and other experimental effects

"CC" = two central electrons, "CF" = one central and one forward electron

M. Bellomo	W and Z/γ^* physics in ATLAS	17-24 July, 2013 13 / 17

 $sin^2 \theta_W^{eff}$ is measured from raw A_{FB} spectra fitting with MC templates obtained varying the input value of the weak mixing angle

 $sin^2 \theta_W^{eff}(combined) = 0.2297 \pm 0.0004(stat) \pm 0.0009(syst)$

- * Precision comparable to D0 result from Tevatron
- \star Measurement in agreement within 1.8 σ with PDG global fit

M. Bellomo

ATLAS-CONF-2013-043

* Helicity fractions, f_0 and $f_L - f_R$, measured from angular distribution in transverse plane: $cos\theta_{2D} = p_T^{\vec{\ell}*} \cdot p_T^{\vec{W}} / |p_T^{\vec{\ell}*}||p_T^{\vec{W}}|$

 \checkmark Measurements done for 35 < p_T^W < 50 GeV and p_T^W > 50 GeV regions

* $f_L - f_R$ measured with 12–14% syst. uncertainty, dominated by hadronic recoil scale uncertainty (statistical uncertainty in 6–8% range)

 $\star\,$ Results compared to NLO QCD predictions from MC@NLO, POWHEG MCs

Eur. Phys. J. C72 (2012) 2062

τ polarization in $W \rightarrow \tau \nu$ decays

* First measurement at hadron collider and first probe of helicity structure of $W\to \tau\nu$ coupling at high Q^2

 $\checkmark\,$ Done in hadronic τ decay channels with single charged hadron

- * General method based on energy sharing of charged and neutral πs in τ decay relative to $p_T^{\tau,vis}$ ("charged asymmetry", Υ)
- \star Systematic uncertainty dominated by au and cluster energy calibrations

★ Measured value in agreement with SM within uncertainties (5 – 7%)

 $P_{\tau} = -1.06 \pm 0.04 (stat)^{+0.05}_{-0.07} (syst)$ (Bayesian 95% credibility interval [-1, -0.91])

Summary & Outlook

W,Z Physics at LHC can be measured with very high precision

- * Measurements of (pseudo-)rapidity spectra of $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays can lead to new insights on PDFs, hint of unsuppressed strangeness in proton at low x from W,Z 2010 data fitted with HERA data
- * Very precise measurement of ϕ^* in $Z \to \ell \ell$ decay allows to make stringent tests of resummation calculations
- * The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to tests pQCD and EW corrections with sensitivity to γ -induced processes
- * First ATLAS measurement of $sin^2 \theta_W^{eff}$ analyzing A_{FB} in $Z \rightarrow \ell \ell$ decays, already as precise as best Tevatron result
- * W polarization measured in $W \rightarrow \ell \nu$ decays at high transverse momentum allows to test QCD calculations for better understanding of the modeling of angular distributions
- * First measurement of τ polarization in $W \rightarrow \tau \nu$ decays at hadron colliders, proof of a general methodology applicable also to Z and H bosons

Summary & Outlook

W,Z Physics at LHC can be measured with very high precision

- * Measurements of (pseudo-)rapidity spectra of $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays can lead to new insights on PDFs, hint of unsuppressed strangeness in proton at low x from W,Z 2010 data fitted with HERA data
- * Very precise measurement of ϕ^* in $Z \to \ell \ell$ decay allows to make stringent tests of resummation calculations
- * The measurement of NC Drell-Yan cross-section up to 1.5 TeV allows to tests pQCD and EW corrections with sensitivity to γ -induced processes
- * First ATLAS measurement of $sin^2 \theta_W^{eff}$ analyzing A_{FB} in $Z \rightarrow \ell \ell$ decays, already as precise as best Tevatron result
- * W polarization measured in $W \rightarrow \ell \nu$ decays at high transverse momentum allows to test QCD calculations for better understanding of the modeling of angular distributions
- * First measurement of τ polarization in $W \rightarrow \tau \nu$ decays at hadron colliders, proof of a general methodology applicable also to Z and H bosons

More to come "soon" with 2011 dataset and then 8 TeV collisions ...

Back-up slides

LHC runs

- * LHC delivered p p collision data in three runs at 7 and 8 TeV c.m.e.
- 2011 7 TeV and then 2012 8 TeV datasets (will) allow for precise measurements of W,Z physics properties and the determination of multiple differential cross-sections

$W \rightarrow \ell \nu$ selection

- * Single lepton triggers with high efficiency
- * $p_{T,l} > 20 \text{ GeV}$ $|\eta_e| < 2.47, |\eta_\mu| < 2.4$ (elec. excl. calo crack) isolated leptons $E_{T}^{miss} > 25 \text{ GeV}$ $m_T > 40 \text{ GeV}$
- * QCD from data fitting E_T^{miss} (e) and studying control regions in $iso E_T^{miss}$ plane (μ)
- * 131 140 K candidates with 7 - 9% background

$Z \rightarrow \ell \ell$ selection

- * Single lepton triggers with high efficiency
- * $p_{T,l} > 20 \text{ GeV}$ $|\eta_e| < 2.47, |\eta_\mu| < 2.4$ (elec. excl. calo crack) isolated leptons opposite charge $66 < m_{\ell,\ell} < 116 \text{ GeV}$
- * QCD from data fitting $m_{\ell,\ell}$ lineshape and studying control regions in (*iso*, $m_{\ell,\ell}$)
- * ~ 10 12 K candidates with 1 - 2% background

Precision of W and Z cross-sections with $\mathcal{L} = 35 \, pb^{-1}$

- * $\delta \sigma_{W \to e\nu}$ of 1.8 2.0%, dominated by electron reconstruction, identification and E_{T}^{miss}
- * $\delta \sigma_{Z \rightarrow ee}$ of 2.7%, dominated by el. reconstruction and identification
- * $\delta\sigma_{W\to\mu\nu}$ of 1.6 1.7 %, dominated by muon efficiencies, QCD background and $E_{\rm T}^{\rm miss}$
- * $\delta \sigma_{Z \to \mu \mu}$ of 0.9%, dominated by muon efficiencies

Electron channels (%)	W [±]	w+	W-	Z
Trigger	0.4	0.4	0.4	<0.1
Electron reconstruction	0.8	0.8	0.8	1.6
Electron identification	0.9	0.8	1.1	1.8
Electron isolation	0.3	0.3	0.3	—
Electron energy scale and resol.	0.5	0.5	0.5	0.2
Non-operational LAr channels	0.4	0.4	0.4	0.8
Charge misidentification	0.0	0.1	0.1	0.6
QCD background	0.4	0.4	0.4	0.7
Electroweak+tt background	0.2	0.2	0.2	<0.1
E_T^{miss} scale and resolution	0.8	0.7	1.0	—
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
C _{W/Z} theoretical uncertainty	0.6	0.6	0.6	0.3
Total experimental uncertainty	1.8	1.8	2.0	2.7
$A_{W/Z}$ theoretical uncertainty	1.5	1.7	2.0	2.0
Total excluding luminosity	2.3	2.4	2.8	3.3
Luminosity		3.	.4	

Muon channels (%)	W±	w+	w-	Ζ
Trigger	0.5	0.5	0.5	0.1
Muon reconstruction	0.3	0.3	0.3	0.6
Muon isolation	0.2	0.2	0.2	0.3
Muon p_{T} resolution	0.04	0.03	0.05	0.02
Muon p_T scale	0.4	0.6	0.6	0.2
QCD background	0.6	0.5	0.8	0.3
Electroweak+tt background	0.4	0.3	0.4	0.02
E_T^{miss} resolution and scale	0.5	0.4	0.6	-
Pile-up modeling	0.3	0.3	0.3	0.3
Vertex position	0.1	0.1	0.1	0.1
$C_{W/Z}$ theoretical uncertainty	0.8	0.8	0.7	0.3
Total experimental uncertainty	1.6	1.7	1.7	0.9
A _{W/Z} theoretical uncertainty	1.5	1.6	2.1	2.0
Total excluding luminosity	2.1	2.3	2.6	2.2
Luminosity			4	

- $\star\,$ Comparing in the fiducial region disentangles theor. and exp. effects
- \star This enables more interesting comparisons among different PDF sets
- $\star\,$ First dedicated calculation of $\rm NNLO$ predictions based on $\rm FEWZ$ and $\rm DYNNLO$ with experimental cuts

- $\star~W^{\pm}/Z,~W^{+}/W^{-}$ ratios profit from exp. and theor. systematics cancellation
- * W^{\pm}/Z ratio measured with total uncert. of 1.5%, W^{+}/W^{-} with 1.7%

 $\star\,$ New measurements of the ratios of the e and μ branching fractions

$$R_W = \frac{\sigma_W^e}{\sigma_W^{\mu}} = \frac{Br(W \to e\nu)}{Br(W \to \mu\nu)} = 1.006 \pm 0.004 \text{ (sta)} \pm 0.006 \text{ (unc)} \pm 0.023 \text{ (cor)} = 1.006 \pm 0.024$$
$$R_Z = \frac{\sigma_Z^e}{\sigma_Z^{\mu}} = \frac{Br(Z \to ee)}{Br(Z \to \mu\mu)} = 1.018 \pm 0.014 \text{ (sta)} \pm 0.016 \text{ (unc)} \pm 0.028 \text{ (cor)} = 1.018 \pm 0.031$$

- Inserting R_Z PDG value into the present measurement for a combined cross section analysis
- \Rightarrow reduction of correlated R_W systematic uncertainty
- $\Rightarrow \text{ improved result of} \\ R_W = 0.999 \pm 0.021.$

- * *e* and μ measurements combined with full covariance matrix available ($\chi^2/ndf = 33.9/29$)
- * Z rapidity coverage up to |y| = 3.5including the forward $Z \rightarrow ee$
- ★ Accuracy ~ 2% for |y_z| < 2 and W, ~ 6 (10) % at |y_z| = 2.6 (3.2)

- Overall broadly described by predictions of NNLO PDF sets considered
- Measurements can impact on PDF central values and uncertainties ...

- * Little is known about light sea-quark separation at low x and, in particular, about the strange quark distribution, s(x)
 - \checkmark Flavor SU(3) symmetry suggests equal light sea-quark distributions
 - $\checkmark\,$ However, the strange quarks may be suppressed due to their larger mass

* s(x), $\bar{s}(x)$ accessed in CC ν -scattering $(W^+s \rightarrow c, W^-\bar{s} \rightarrow \bar{c})$ at x ~ 0.1 and $Q^2 \sim 10 \text{ GeV}^2$ by the NuTeV and CCFR experiments

- $\checkmark\,$ Uncertainties from charm fragmentation and nuclear corrections
- $\checkmark\,$ Results are compatible with either suppressed and unsuppressed strangeness

- * Little is known about light sea-quark separation at low x and, in particular, about the strange quark distribution, s(x)
 - \checkmark Flavor SU(3) symmetry suggests equal light sea-quark distributions
 - $\checkmark\,$ However, the strange quarks may be suppressed due to their larger mass
- * Recent HERMES kaon multiplicity data point to a strong x dependence of s(x) and rather large value of $x(s + \bar{s})$ at $x \sim 0.04$ and Q² 1.3 GeV²

Data interpretation depends on the knowledge of the fragmentation of strange quarks to K mesons at low Q^2

* Nucleon strange density plays an important role in a wide range of physics

 \checkmark From measurements at p-p colliders of W + c production and m_W to formation of strange matter and neutrino interactions at ultrahigh energies

- * HERA and ATLAS W,Z data is fit with the HERAFITTER framework with Q_0^2 1.9 GeV², m_c 1.4 GeV, m_b 4.75 GeV, $\alpha_s(M_Z)$ 0.1176
- * Fits are run with fixed $\bar{s}/\bar{d} = 0.5$ and leaving $\bar{s}(x)$ free (with $s = \bar{s}$)
- * The "free \bar{s} fit" leads to better χ^2 to ATLAS data and determines

 $r_s = 0.5(s+\bar{s})/\bar{d} = 1.00 \pm 0.20 \exp \pm 0.07 \mod_{-0.15}^{+0.10} \operatorname{par}_{-0.07}^{+0.06} \alpha_{\rm S} \pm 0.08 \operatorname{th}$

- Fitted r_s value is compared to NNLO PDFs
- * Increase in strange leads to decrease in \bar{u}, \bar{d} given the precise constrain given by F_2 HERA data at low x, total sea (Σ) increases by 8%
- * The prediction with "free \bar{s} fit" leads to a better description of the measured W/Z ratio

W+D cross-section measurement

- * Handle on strange quark PDF at $x \sim 0.01$ (eg. important for W mass)
 - \lor SU(3) flavour, symmetric light quark sea? or due to strange mass, strange suppression? dependence on x? $s \overline{s}$ asymmetry?
- * Exclusive reconstruction of four $D(*)^+$ decay channels exploiting the lepton-D charge correlation: OS-SS subtraction \Rightarrow fit sig/bkg templates \Rightarrow unfold

Boson p_T measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

★ Boson
$$p_T$$
 in $Z \rightarrow \ell \ell$ decays

★ Boson p_T in $W \rightarrow \ell \nu$ decays

Boson p_T measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

* Uncertainties

$\langle p_{\rm T}^Z \rangle$ (GeV)	$rac{1}{\sigma^{ m fid}}rac{{ m d}\sigma^{ m fid}}{{ m d}p_{ m T}^Z} m (GeV^{-1})$	stat. (%)	syst. (%)	A_c^{-1}	unc. (%)	30 Total (Combined) ATLAS
(GeV) 1.3 4.8 7.5 10 13 16 19 22 25 28 33 39 45 51 57 69 89 132	$\begin{array}{c} ({\rm GeV}^{-1}) \\ 0.0366 \\ 0.0586 \\ 0.0686 \\ 0.0466 \\ 0.0210 \\ 0.0210 \\ 0.0210 \\ 0.0167 \\ 0.0133 \\ 0.0112 \\ 0.0092 \\ 0.0067 \\ 0.0038 \\ 0.0030 \\ 0.00013 \\ 5.5 \cdot 10^{-4} \\ 1.6 \cdot 10^{-4} \\ 1.6 \cdot 10^{-4} \end{array}$	(%) 2.0 1.5 1.7 1.9 2.2 2.5 2.8 3.1 3.4 4.0 3.2 3.8 4.2 4.9 5.7 4.0 6.1 5.9	(%) 4.7 3.6 1.5 1.6 1.7 1.7 1.8 1.9 2.0 2.1 2.1 2.3 2.4 2.5 2.7 2.8 3.1 3.7	1.047 1.029 1.014 0.999 0.999 0.990 0.990 0.994 0.988 0.979 0.965 0.979 0.965 0.950 0.938 0.910 0.826	(%) 3.7 1.8 1.5 1.5 1.5 1.5 2.3 3.2 3.9 4.3 4.4 5.3 5.3 5.4	Total (Combined) μ Lds Total (Combined)
245	$9.8 \cdot 10^{-6}$	15.6	5.4	0.672	5.6	p _T ^w [GeV]

Boson p_T measurements in $W \rightarrow \ell \nu$ and $Z \rightarrow \ell \ell$ decays

* Comparison of measurements with 2010 data

Z boson ϕ^* definition

- * Angular observable $\propto p_T^Z/m_{\ell\ell} \Rightarrow \phi^* \equiv tan(\phi_{acop}/2) \cdot sin(\theta_{\eta}^*)$ (defined in A. Banfi et al., Eur. Phys. J. C 71 (2011) 1600)
 - $\lor \phi_{acop} \equiv \pi \Delta \phi$, $\Delta \phi$ being the azimuthal opening angle between the two leptons $\lor cos(\theta_{\eta}^*) \equiv tanh[(\eta^- - \eta^+)/2]$ is a measure of the scattering angle of the leptons with respect to the proton beam direction in the rest frame of the dilepton system.

- ★ 99% of events have $\Delta \phi > \pi/2$
- * $\hat{t} = (p_T^1 p_T^2)/|p_T^1 p_T^2|, p_T^i$ vector in plane transverse to beam direction
- $\star \quad \frac{\Delta(a_T/m_{\ell\ell})}{(a_T/m_{\ell\ell})} = \left(\frac{p_T^2}{p_T^1 + p_T^2} \frac{1}{2}\right) \frac{\Delta p_T^1}{p_T^1}$ The ratio is less sensitive to p_T uncertainties

 $a_T/m_{\ell\ell} \approx tan(\phi_{acop}/2)sin(\theta^*)$, θ^* defined with a Lorentz boost along the beam direction such that the two leptons are back-to-back in $r - \theta$ plane. This boost corresponds to $\beta = tanh[(\eta^- + \eta^+)/2]$ yielding to $cos(\theta^*_{\eta}) = tanh[(\eta^- - \eta^+)/2]$

Z boson ϕ^* measurement

★ Correlation between ϕ^* and boson p_T

Z boson ϕ^* measurement

★ Comparison of ϕ^* measurement in $Z \rightarrow \ell \ell$ decays to Banfi et al. (NNLL-NLO) and FEWZ (NNLO)

High mass Drell-Yan cross-sections

 Cross-section at "dressed level" compared to MC predictions without (left) and with (right) QCD-EW K-factors

including FSR photons in a cone $\Delta R < 0.1$

High mass Drell-Yan cross-sections

* Purity (fraction of reconstructed events generated in the same bin) as a function of m_{ee}

* Distributions of $cos\theta_{CS}^*$ for muons, central and forward electrons

$$A_{FB} = \frac{N_{\cos\theta_{CS}^* \ge 0} - N_{\cos\theta_{CS}^* \le 0}}{N_{\cos\theta_{CS}^* \ge 0} + N_{\cos\theta_{CS}^* \le 0}} \quad , \quad \cos\theta_{CS}^* = \frac{p_z(\ell^+\ell^-)}{|p_z(\ell^+\ell^-)|} \frac{2(p_1^+p_2^- - p_1^-p_2^+)}{m(\ell^+\ell^-)\sqrt{m(\ell^+\ell^-)^2 + p_T(\ell^+\ell^-)^2}}$$

 Raw A_{FB} distributions for muons, central and forward electrons, after background subtraction (restricted in the region around the Z pole)

* Raw A_{FB} distributions for muons, central and forward electrons, after background subtraction

 Unfolded A_{FB} spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections (not corrected also for dilution effect)

* Fully unfolded A_{FB} spectrum compared to PYTHIA prediction including QED FSR and NLO QCD corrections (corrected also for dilution effect)

- \star Cosine of the helicity angle of the lepton from W decay at generator-level
- * Solid lines are without selection, dashed lines are after all acceptance plus m_T^W cuts except the η_ℓ cuts and dotted lines are after all acceptance plus m_T^W cuts
- * "All events" distributions are normalised to unity

- * Representation of $cos\theta_{2D}$ as a function of $cos\theta_{3D}$ in events where the W transverse momentum is greater than 50 GeV
- * Events are simulated with MC@NLO after acceptance and m_T^W cuts

* Results of the fits to $cos\theta_{2D}$ distributions using helicity templates for $W \rightarrow \mu\nu$ events with $35 < p_T^W < 50 \text{ GeV}$, after background subtraction

* Results of the fits to $cos\theta_{2D}$ distributions using helicity templates for $W \rightarrow e\nu$ events with $35 < p_T^W < 50 \text{ GeV}$, after background subtraction

* Results of the fits to $cos\theta_{2D}$ distributions using helicity templates for $W \rightarrow \mu\nu$ events with $p_T^W > 50 \text{ GeV}$, after background subtraction

* Results of the fits to $cos\theta_{2D}$ distributions using helicity templates for $W \rightarrow e\nu$ events with $p_T^W > 50 \text{ GeV}$, after background subtraction

* Measured values of f_0 and $f_L - f_R$ within acceptance cuts for $35 < p_T^W < 50 \ GeV$ (left) and $p_T^W > 50 \ GeV$ (right), compared to MC@NLO and POWHEG predictions

