Impact of beam polarization on the LC physics potential for a staged approach

G. Moortgat-Pick, S. Riemann
(Uni Hamburg/DESY)
What is the motivation?

- We have a Higgs!
 That’s great.
- Why do we need to know all its properties with best precision?
 Because that’s the bridge between ‘micro’ and ‘macro’ cosmos.
- We have the Top!
 That’s great.
- Why do we need to know all its properties with best precision?
 Because that’s the bridge to understand dynamics of EWSB.
- Excellent top physics at LHC (and HL-LHC)
 That’s great!
- Do we really also need the LC?
 ...a great chance might just be ahead....
Possible Timeline

July 2013
- Non-political evaluation of 2 Japanese candidate sites complete, followed by down-selecting to one

End 2013
- Japanese government announces its intent to bid

2013-2015
- Inter-governmental negotiations
- Completion of R&Ds, preparation for the ILC lab.

~2015
- Inputs from LHC@14TeV, decision on whether to bid

2015-16
- Construction begins (incl. bidding)

2026-27
- Commissioning

ILC might start @ times HL-LHC!
Preface

• Discovery of a SM-like Higgs around $m_H \sim 125$ GeV
 – Is an absolute revolution!
 – Completely new type
 – Not clear whether a SM-Higgs

• In short -- some LC capabilities:

 As e.g. $\Delta m_{\text{top}} \sim 0.1$ GeV, $\text{coup}_{\text{ttH}} \sim 3\%$, H: BR’s~1(b)-7(c)\%, $\Gamma_H \sim 5\%$, $\Delta \lambda \sim 17\%$

• Very active: many new LC studies and reports….
 – ILC TDR (since June 12, 2013)
 – CLIC CDR 2012
 – Collection of LC notes (DESY123h) online
 – 2 more LC reviews under work

‘The properties of the Higgs boson, to be discovered at the LHC, must be thoroughly investigated in a good condition at the ILC’
(K. Kawagoe, Feb 12)

Further improvement via lumi-upgrade, see Tians’talk!

Focus of my talk (in p. 1st article in Desy123h, 1210.0202)
The LC physics offer

• Staged approach:
 – $\sqrt{s}=250 \text{ GeV}, \text{`Higgs cross section, mass + couplings'}$
 – $\sqrt{s}=350 \text{ GeV}, \text{`Higgs width + top mass'}$
 – $\sqrt{s}=500 \text{ GeV}, \text{`Special Higgs- and top couplings+BSM'}$
 – $(\sqrt{s}=91 \text{ GeV}, \text{`Precision frontier + indirect BSM frontier'}})$
 – $\sqrt{s}\geq1000 \text{ GeV}, \text{`Closing the Higgs picture+more BSM?'}$

• `New’ features, impact on ‘quality’ (and ‘quantity’):
 – Flexible precise energy
 – Perform threshold scans
 – Polarized e- and e+ beams
Technical remarks beam polarization

- $P(e^-) \sim 80\text{-}90\%$

- $P(e^+) \ (\text{always yield } \geq 1.5 \text{ imposed, i.e. ‘full’ lumi})$:
 - $\sqrt{s}=240 \text{ GeV}: P(e^+)=40\%$
 - $\sqrt{s}=350 \text{ GeV}: P(e^+)=56\%$
 - $\sqrt{s}=500 \text{ GeV}: P(e^+)=59\%$
 - $\sqrt{s}=1 \text{ TeV}: P(e^+)=54\%$

- **Measurement of polarization:**
 - Compton polarimetry (up- and down-stream): $\delta P/P=0.25\%$
 - Via WW-process (lumi-weighted!): $\delta P/P(e^-)\sim0.1\%$, $\delta P/P(e^+)\sim0.2\text{-}0.3\%$

A. Ushakov, LC note

See talk by J. List

I. Marchesini, A. Rosca

Marchesini, A. Ushakov, LC note

I. Marchesini, A. Rosca
P_{eff} and L_{eff} for the staged approach

- With the listed parameters:

<table>
<thead>
<tr>
<th>\sqrt{s}</th>
<th>$P(e^-)$</th>
<th>$P(e^+)$</th>
<th>P_{eff}</th>
<th>L_{eff}/L</th>
<th>$\frac{1}{x} \Delta P_{\text{eff}} / P_{\text{eff}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>total range</td>
<td>$\mp 80%$</td>
<td>$0%$</td>
<td>$\mp 80%$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>250 GeV</td>
<td>$\mp 80%$</td>
<td>$\pm 40%$</td>
<td>$\mp 91%$</td>
<td>1.3</td>
<td>0.43</td>
</tr>
<tr>
<td>≥ 350 GeV</td>
<td>$\mp 80%$</td>
<td>$\pm 55%$</td>
<td>$\mp 94%$</td>
<td>1.4</td>
<td>0.30</td>
</tr>
<tr>
<td>total range</td>
<td>$\mp 90%$</td>
<td>$0%$</td>
<td>$\mp 90%$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>250 GeV</td>
<td>$\mp 90%$</td>
<td>$\pm 40%$</td>
<td>$\mp 96%$</td>
<td>1.4</td>
<td>0.43</td>
</tr>
<tr>
<td>≥ 350 GeV</td>
<td>$\mp 90%$</td>
<td>$\pm 55%$</td>
<td>$\mp 97%$</td>
<td>1.5</td>
<td>0.29</td>
</tr>
</tbody>
</table>

- Just by switching on $P(e^+)$!

Gain in polarization! (Almost 100%)
Gain in number of interactions!
Gain in precision by more than a factor 3! (large N)

No gain!
‘New tools’: Qualitative $P(e^\pm)$ effects

- **Access to chirality**
 Practically in all new physics models
 - Chirality of particles/interactions has to be identified
 - Since for $E>>m$: chirality = helicity = polarization

- **Access to specific asymmetries** ($\bar{\nu}$, heavy leptons, ..., see later)

- **Exploitation of transversely-polarized beams** ($\sim P_{e^-}P_{e^+}$)
 - Access to tensor-like interactions (Extra dimensions, etc.)
 - Access to CP-violating phenomena
 - Access to specific triple gauge couplings
 - Optimize top quark polarization
Top production at the LC

- Top very special role: heaviest fundamental fermion
 - most strongly coupled to EWSB sector,
 - Intimately related to the dynamics behind the SB mechanism
 - M_{top} affects M_H, M_W, M_Z via radiative corrections

- At LHC/Tevatron: $\Delta m_{\text{top}} \sim 1$ GeV
 - Crucial: relation between measured mass to a well-defined parameter that is a suitable theoretical input, as MS mass
 - Relation affected by non-perturbative contr. = limiting factor

- At the LC, $e^+e^- \rightarrow t\bar{t}$: measure ‘threshold mass’
 - Relation to well-defined m_{top}, theoret. well under control
 - Threshold scan: $\Delta m_{\text{top}} \sim 100$ MeV (incl. theo+exp. uncertainties!)
Top mass

- **Threshold scan:**
 - Important shift due to non-logarithmic NNNLO terms
 - LC: Peak position remains stable: $\Delta m_t = 100$ MeV
 - Includ. exp uncertainty of ~30 MeV + theo. uncertainty ~70 MeV
 - Expected accuracy confirmed by full simulation studies!
 - Dedicated threshold scan required with about ~100 fb$^{-1}$
Top electroweak coupling

- $\sqrt{s}=500 \text{ GeV}$: chiral structure of ew top couplings:
 - expected to be sensitive to BSM sources
 - Measurement of $'g_{\text{ttZ}}'$ and $'g_{\text{tt\gamma}}'$ rather unique for a LC!

- Use different observables
 - Cross section
 - A_{FB}
 - helicity angle

- Couplings measurable at %-level thanks to the different observables
 - runs with different beam polarization configurations $P(e^-), P(e^+)$

→ Powerful test of the chiral structure!
Top electroweak coupling

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

Precision: \times section $\sim 0.5\%$

Precision $A_{FB} \sim 2\%$

Precision $\lambda_h \sim 4\%$

\Rightarrow

ILC might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14$ TeV, 300 fb$^{-1}$)
Top Yukawa coupling

- \(\sqrt{s}=500 \text{ GeV} \): top-Yukawa couplings:
 - At this energy: \(ttH \) is close to threshold
 - But thanks to threshold effects: \(\sigma \) enhancement by factor 2!
 - Key role in dynamics of ew symmetry-breaking

- Direct measurement of Yukawa couplings: \(g_{ttH} \)
 - With \(P(e^-,e^+)=(-80\%,+30\%) \) and 1600 fb \(^{-1}\)
 \[\Delta g_{ttH} / g_{ttH} < 16\% \]
 but model-independent!

- \(\sqrt{s}=1000 \text{ GeV} \):
 - With \(P(e^-,e^+)=(-80\%,+20\%) \) and 2500 fb \(^{-1}\)
 \[\Delta g_{ttH} / g_{ttH} < 4\% \]

- In combination: \(\Delta g_{ttH} / g_{ttH} < 2\% \)

LHC estimates: about \(\Delta g_{ttH} \sim 10\% \) at HL-LHC (14 TeV, 3000fb\(^{-1}\))

See J. Tian’s talk!
Top FCNC

- Flavour-changing neutral couplings
 - Relevant for many BSM
 - Can be studied in top pair or single top production
 - Using polarized beams (3σ, based on 300-500 fb⁻¹) :

| | unpolarized beams | $|P_{e^-}| = 80\%$ | $(|P_{e^-}|, |P_{e^+}|) = (80\%, 45\%)$ |
|----------|-------------------|-------------------|-------------------------------------|
| | $\sqrt{s} = 500\text{ GeV}$ | $\sqrt{s} = 800\text{ GeV}$ |
| $BR(t \to Zq)(\gamma_{\mu})$ | 6.1×10^{-4} | 3.9×10^{-4} | 2.2×10^{-4} |
| $BR(t \to Zq)(\sigma_{\mu\nu})$ | 4.8×10^{-5} | 3.1×10^{-5} | 1.7×10^{-5} |
| $BR(t \to \gamma q)$ | 3.0×10^{-5} | 1.7×10^{-5} | 9.3×10^{-6} |
| $BR(t \to Zq)(\gamma_{\mu})$ | 5.9×10^{-4} | 4.3×10^{-4} | 2.3×10^{-4} |
| $BR(t \to Zq)(\sigma_{\mu\nu})$ | 1.7×10^{-5} | 1.3×10^{-5} | 7.0×10^{-6} |
| $BR(t \to \gamma q)$ | 1.0×10^{-5} | 6.7×10^{-6} | 3.6×10^{-6} |

- At the LC: sensitivity up to 10^{-6} to FCNC couplings!

Exceeding LHC!
Top polarization

- Top=3rd generation:
 - polarization = analyzing tool for SM/BSM couplings

- With beam polarization:
 - P_{top} can be tuned maximal/minimal
 - Left-right asymmetry (at NLO):
 - $P_{\text{top}}=\text{max}$ for $P_{\text{eff}} \sim 1$
 - $P_{\text{eff}} = -1$ favoured (more stable)
 - $P_{\text{top}}=0$ for $P_{\text{eff}} \sim 0.4$
Effects of transverse beams \(\sqrt{s}=500 \, \text{GeV} \)

- Transversely-polarized beams in e+e- -> tt
 - probe scalar- and tensor-like interactions
- Parametrization via eff. four-Fermi operators:

\[
\mathcal{L}^{4F} = \sum_{i,j=L,R} \left[S_{ij}(eP_ie)(tP_jt) + T_{ij}(e\frac{\sigma_{\mu\nu}}{\sqrt{2}} P_ie)(t\frac{\sigma_{\mu\nu}}{\sqrt{2}} P_jt) \right]
\]

- Use angular distributions with \(P^T_{e+} P^T_{e+} \)
 - Sensitive to azimuthal angle: specific asymmetries
 - Assumed 100% beams
- Sensitive to small S-, T-admixtures

<table>
<thead>
<tr>
<th>(\sqrt{s})</th>
<th>Case</th>
<th>Coupling</th>
<th>Individual limit from asymmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 GeV</td>
<td>ReS</td>
<td></td>
<td>(2.3 \times 10^{-1} , \text{TeV}^{-2})</td>
</tr>
<tr>
<td></td>
<td>ReT</td>
<td></td>
<td>(1.2 \times 10^{-3} , \text{TeV}^{-2})</td>
</tr>
<tr>
<td></td>
<td>ImT</td>
<td></td>
<td>(1.2 \times 10^{-1} , \text{TeV}^{-2})</td>
</tr>
<tr>
<td>++</td>
<td>ReS</td>
<td></td>
<td>(2.3 \times 10^{-3} , \text{TeV}^{-2})</td>
</tr>
<tr>
<td></td>
<td>ReT</td>
<td></td>
<td>(1.0 \times 10^{-2} , \text{TeV}^{-2})</td>
</tr>
<tr>
<td></td>
<td>ImT</td>
<td></td>
<td>(5.2 \times 10^{-3} , \text{TeV}^{-2})</td>
</tr>
</tbody>
</table>
Other exotics: heavy Leptons

- **Study: e+e- -> W+W-**
 - Very sensitive to leptonic vertices and trilinear gauge couplings
 - New heavy neutral boson or heavy leptons can contribute
 - E.g., E6 inspired model are consistent with Z’s but also new heavy leptons (SU(2))
- **Model identification = exclusion of competitive models (incl. SM)**
 - Double polarization asymmetries very useful:

\[
A_{\text{double}} = P_1 P_2 \frac{(\sigma^{RL} + \sigma^{LR}) - (\sigma^{RR} + \sigma^{LL})}{(\sigma^{RL} + \sigma^{LR}) + (\sigma^{RR} + \sigma^{LL})}.
\]

Sensitive to effects from such models and model distinction already at 500 GeV!
What if nothing else than H is found now?

The exciting Higgs story has just started....

• Since m_H is free parameter in SM at tree level
 – Crucial relations exist, however, between m_{top}, m_W and $\sin^2\theta_{\text{eff}}$
 – If nothing else appears in the electroweak sector, these relations have to be urgently checked

• Which strategy should one aim?
 – exploit precision observables and check whether the measured values fit together at quantum level
 – $m_Z, m_W, \alpha_{\text{had}}, \sin^2\theta_{\text{eff}}$ and m_{top}

• Exploit `GigaZ’ option: high lumi run at $\sqrt{s} = 91$ GeV
 – $P_e^- = 80\%$ and $P_e^+ = 60\%$ required!
 (If only $P_e^- = 90\%$: precision ~factor 4 less!)
Higgs story has just started … \sqrt{s}=91 GeV

LEP:
\[\sin^2 \theta_{\text{eff}}(A_{FB}^{b}) = 0.23221 \pm 0.00029 \]

SLC:
\[\sin^2 \theta_{\text{eff}}(A_{LR}) = 0.23098 \pm 0.00026 \]

World average:
\[\sin^2 \theta_{\text{eff}} = 0.23153 \pm 0.00016 \]

Goal GigaZ: $\Delta \sin \theta = 1.3 \times 10^{-5}$

Uncertainties from input parameters: Δm_Z, $\Delta \alpha_{\text{had}}$, m_{top}, ...

- $\Delta m_Z = 2.1$ MeV:
- $\Delta \alpha_{\text{had}} \sim 10$ (5 future) x 10^{-5}:
- $\Delta m_{\text{top}} \sim 1$ GeV (Tevatron/LHC):
- $\Delta m_{\text{top}} \sim 0.1$ GeV (ILC):

\[\Delta \sin^2 \theta_{\text{eff}} \text{para} \sim 1.4 \times 10^{-5} \]
\[\Delta \sin^2 \theta_{\text{eff}} \text{para} \sim 3.6 \ (1.8 \text{ future}) \times 10^{-5} \]
\[\Delta \sin^2 \theta_{\text{eff}} \text{para} \sim 3 \times 10^{-5} \]
\[\Delta \sin^2 \theta_{\text{eff}} \text{para} \sim 0.3 \times 10^{-5} \]
What else could we learn? \(\sqrt{s} = 91 \text{ GeV} \)

- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from \(\sin^2 \theta_{\text{eff}} \)?

- If GigaZ precision:
 - i.e. \(\Delta m_{\text{top}} = 0.1 \text{ GeV} \)...
 - Deviations measurable

\(\sin^2 \theta_{\text{eff}} \) can be the crucial quantity to reveal effects of NP!
To close the story... GigaZ \(\sqrt{s}=91 \text{ GeV} \)

- Measure \(\sin^2\theta_{\text{eff}} \) via \(A_{LR} \) with high precision: \(\Delta \sin\theta=1.3 \ 10^{-5} \)

World average \(\rightarrow \) happy with both!

Central value has large impact !!!

\[\text{LEP value disfavours both, SM+MSSM} \]

\[\text{SLD value disfavours SM} \]

\[\text{GigaZ precision!} \]
Top + EW Physics at the LC

• The LC offers new tools and a staged approach:
 – $\Delta m_{\text{top}}=100$ MeV (incl. exp+theo uncertainties), ew coupling @%-level
 – complements and extends the HL-LHC capabilities
 – sensitiv to quantum effects of the top and to BSM@top

• LC allows to fully exploit GigaZ! …keeping our ‘savety margin’

Physics case is well justified!

Shouldn’t we shake the hands?