

Time-dependent CP violation in B decays at Belle

Luka Santelj Jozef Stefan Institute

for Belle collaboration

• $\sin 2\phi_1^{\text{eff}}$ measurements in

$$B^0 \to \eta' K^0$$

$$B^0 \to \eta' K^0$$
$$B^0 \to \omega K_S^0$$

 \bullet ϕ_2 related measurements in

$$B^0 \to \pi^+\pi^-$$

 $B^0 \to \rho^0 \rho^0$

Belle experiment

- Operating at KEKB collider (1999-2010).
- Asymmetric beam energy: $8.0~{\rm GeV}~e^-~{\rm on}~3.5~{\rm GeV}~e^+$
- Boosted B meson pair produced in $e^- \longrightarrow \longleftarrow e^+ \Rightarrow \Upsilon(4S) \Rightarrow B\bar{B}$
- Collected about 772M BB pairs.

Time dependent CPV measurements

reconstruction

What?

$$B^0(0)=B^0$$
 $\bar{B}^0(0)=\bar{B}^0$ flavor eigenstates

$$A_f(\Delta t) = \frac{\Gamma(B^0(\Delta t) \to f) - \Gamma(B^0(\Delta t) \to f)}{\Gamma(B^0(\Delta t) \to f) + \Gamma(\bar{B}^0(\Delta t) \to f)} = \underbrace{A_f \cos \Delta M \Delta t + \underbrace{S_f \sin \Delta M \Delta t}}_{\text{on } \Delta H}$$

How?

Quantum coherence

 $B_{tag} \to B^0(\bar{B^0})$ flavor specific at t B_{sig} was $\bar{B}^0(\bar{B^0})$ at t

Mass of $\Upsilon(4S)$ just above $2M_B$ B pair ~ at rest in CMS

Asymmetric beam energy

$$\Delta t = \Delta z / \beta \gamma c$$

We need to:

- 1. Determine the flavor of B_{tag} .
- 2. Reconstruct B_{sig} into final state f.
- 3. Measure the distance between the decay vertices.

CPV in $\mathbf{b} \to \mathbf{s} \mathbf{\bar{q}} \mathbf{q}$ decays

Motivation

- Decays dominated by $b \to s\bar{q}q$ transition. FCNC \to penguin diagram
- The asymmetry parameters within the SM:

$$\mathcal{A}_{sar{q}q} \simeq 0 \qquad \mathcal{S}_{sar{q}q} \simeq -\xi_f \sin 2\phi_1$$
 CP eigenvalue

- $\sin 2\phi_1$ can be very accurately measured in $\,B^0 o J/\psi K^0\,$.
- Loop dominated \rightarrow sensitive to new physics.

$$\mathcal{S}_{s\bar{q}q} \to -\xi_f \sin 2\phi_1^{eff}$$

• Observing the difference $|\mathcal{S}_{s\bar{q}q} - \mathcal{S}_{J/\psi K^0}|$ to be large \to sign of new physics.

${f B^0} o \eta' {f K^0}$ analysis

9 600

• To obtain signal yield we perform 3D fit to data distribution in

$$\Delta E = E_B^{cms} - E_{beam}^{cms}$$

$$M_{bc} = \sqrt{(E_{beam}^{cms})^2 - (p_B^{cms})^2}$$

 $\mathcal{R}_{s/b}$ - likelihood ratio from event shape variables

To separate signal and main background, from

$$e^+e^- \to q\bar{q}$$

 $(q=u,d,s,c)$

$$\eta' K_L^0 \quad p_B^{cms}, \mathcal{R}_{s/b}, r$$

cont. bkg

 $B\bar{B}$ bkg.

signal

Entries / 0.0026 GeV

 $M_{bc}, \Delta E, \mathcal{R}_{s/b}$

5.28 5.29 M_{bc} [GeV]

	This analysis	2007 analysis
	$772~\mathrm{M}~Bar{B}$	$534~\mathrm{M}~Bar{B}$
mode	$\overline{N_{sig}}$	$\overline{N_{sig}}$
$\eta' K_S$	2506.3 ± 63.1	1256.6 ± 42.1
$\eta' K_L$	1041.7 ± 41.1	478.8 ± 41.1

Beside new data, about 25% improvement in reconstruction efficiency

${f B^0} ightarrow \eta' {f K^0}$ analysis

With 772 M BB we obtain

Preliminary results

$$S_{\eta'K^0} = 0.68 \pm 0.07(stat) \pm 0.03(syst)$$

 $A_{\eta'K^0} = +0.03 \pm 0.05(stat) \pm 0.03(syst)$

	$772~\mathrm{M}~Bar{B}$	
mode	$-\xi_f \mathcal{S}$	\mathcal{A}
$\eta' K_S^0$	0.71 ± 0.07	0.02 ± 0.05
$\eta' K_L^{\widetilde{0}}$	0.46 ± 0.21	0.09 ± 0.14

Errors are statistical only

World's most precise measurement of CPV in: $B^0 \to \eta' K^0 \ b \to s \bar q q$

Well consistent with $\sin 2\phi_1$

${f B^0} ightarrow \omega {f K^0_S}$ analysis

• 7D fit to $\Delta E, M_{bc}, \mathcal{R}_{s/b}, m_{3\pi}, \mathcal{H}_{3\pi}, \Delta t, q$

to obtain branching fraction and CPV parameters

• Branching fraction $\mathcal{B}(B^+ \to \omega K^+)$ also measured

Fit result

Preliminary results

Branching fractions:

$$\mathcal{B}(B^0 \to \omega K^0) = (4.5 \pm 0.4(stat) \pm 0.3(syst)) \times 10^{-6}$$
$$\mathcal{B}(B^+ \to \omega K^+) = (6.8 \pm 0.4(stat) \pm 0.4(syst)) \times 10^{-6}$$

CPV parameters:

$$\mathcal{S}_{\omega K_S^0} = +0.91 \pm 0.32(stat) \pm 0.05(syst)$$

$$\mathcal{A}_{\omega K_S^0} = -0.36 \pm 0.19(stat) \pm 0.05(syst)$$

First evidence of CPV in ${f B^0}
ightarrow \omega {f K^0}$

${f B^0} o \pi^+\pi^-$ analysis

$$\lambda \simeq e^{-2i\phi_2}$$
 — UT angle

$$\mathcal{S} = rac{2 \mathrm{Im} \lambda}{1 + |\lambda|^2} \quad \mathcal{A} = rac{1 - |\lambda|^2}{1 + |\lambda|^2} \qquad rac{\mathcal{A} \not\approx 0}{\mathcal{S} \propto \sin 2(\phi_2 + \Delta \phi_2)}$$

But penguin is not small!

$$\mathcal{A} \not\approx 0$$

$$\mathcal{S} \propto \sin 2(\phi_2 + \Delta \phi_2)$$

Needed: $\mathcal{S}, \mathcal{A}, \mathcal{B}$ $B^0 \to \pi^+\pi^-, \pi^0\pi^0$

$$B^+ \to \pi^+ \pi^0$$

• 7D fit to: $\Delta E, M_{bc}, \mathcal{L}_{\mathcal{K}\pi}^+, \mathcal{L}_{\mathcal{K}\pi}^-, \mathcal{R}_{s/b}, \Delta t, q$

	This analysis	
	$772~\mathrm{M}~Bar{B}$	
	$\overline{N_{sig}}$	
$\pi^+\pi^-$	$\simeq 2360$	

	Previous $534 \text{ M} B\bar{B}$	
	$\overline{N_{sig}}$	
$\pi^+\pi^-$	1464	

${f B^0} ightarrow \pi^+\pi^-$ analysis

BaBar

LHCb

Average

Belle

 $\pi^+\pi^-S_{CP}$ vs C_{CP}

OLD

Contours give $-2\Delta(\ln L) = \Delta\chi^2 = 1$, corresponding to 60.7% CL for 2 do

Fit result

$$\mathcal{A}_{\pi^{+}\pi^{-}} = +0.33 \pm 0.06(stat) \pm 0.03(syst)$$

$$S_{\pi^+\pi^-} = -0.64 \pm 0.08(stat) \pm 0.03(syst)$$

-0.8

 $\pi^+\pi^-S_{CP}$ vs C_{CP}

NEW

BaBar

LHCb

Average

-0.2

-0.4

-0.6

Belle

-0.8

 $772~\mathrm{M}~Bar{B}$

$$B^0 \to \pi^+\pi^-$$

$$B^+ \to \pi^+ \pi^0$$

 $253~{\rm M}~B\bar{B}$

$$B^0 \to \pi^0 \pi^0$$

${f B^0} ightarrow ho^{f 0} ho^{f 0}$ analysis

• Decay dominated by $b o u \bar u d$ transition.

- tree dominated
- color suppresed
- isospin analysis $ightarrow \phi_2$

 $ho^0
ho^0$ not pure CP eigenstate (longitudinal component CP even, transverse CP even + odd)

Helicity analysis to disentangle, i.e. to measure $f_{\cal L}$

• 6D fit to: $\Delta E, M_{\pi^+\pi^-}^1, M_{\pi^+\pi^-}^2, \cos\theta_H^1, \cos\theta_H^2, \mathcal{R}_{s/b}$

Dominant background $e^+e^- \to q\bar{q} \; (q=u,d,s,c)$, large $B^0 \to 4\pi^\pm$

 $B^0 \to \rho^0 \rho^0, B^0 \to f^0 \rho^0$, all $B^0 \to 4\pi$, non-peaking $B\bar{B}$, all non-peaking

${f B^0} ightarrow ho^{f 0} ho^{f 0}$ analysis

http://arxiv.org/abs/1212.4015

Fit result

$$\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.02 \pm 0.3(stat) \pm 0.22(syst)) \times 10^{-6}$$
[2.9 σ significance]

$$[2.9\sigma$$
 significance

Upper limit (90% C.L.)
$$< 1.5 \times 10^{-6}$$

$$\mathcal{B}(B^0 \to f_0 \rho^0) \times \mathcal{B}(f_0 \to \pi^+ \pi^-) = (0.86 \pm 0.27(stat) \pm 0.15(syst)) \times 10^{-6}$$

first evidence

$\phi_{\mathbf{2}}$ isospin analysis

 $f_L = 0.21^{+0.18}_{-0.22} \pm 0.11$

this
$$\mathcal{B}(B^0 o
ho^0
ho^0)_L$$
W.A. $\begin{cases} \mathcal{B}(B^0 o
ho^+
ho^-)_L \\ \mathcal{B}(B^+ o
ho^+
ho^0) \\ \mathcal{A}^{+-},\mathcal{S}^{+-} \end{cases}$
BaBar $\mathcal{A}^{00},\mathcal{S}^{00}$

$$\phi_2 = (91.0 \pm 7.2)^{\circ}$$

$$\Delta\phi_2 = (0.0 \pm 5.4)^{\circ}$$

▶ penguin negligible

Summary

- Two new measurements of time dependent CPV in $b \to s\bar q q$ transition dominated decays. They provide:
 - most precise parameters of CPV in $B^0 \to \eta' K^0$ to date,

$$S_{\eta'K^0} = +0.68 \pm 0.07(stat) \pm 0.03(syst)$$

- first evidence of CPV in $B^0 o \omega K^0$

$$S_{\omega K_S^0} = +0.91 \pm 0.32(stat) \pm 0.05(syst)$$

- most precise measurement of $\mathcal{B}(B^0 \to \omega K^0)$ and $\mathcal{B}(B^+ \to \omega K^+)$
- ullet Two recent measurements that provide new constraints on ϕ_2 .
 - world's most precise parameters of CPV in $\,B^0 o \pi^+\pi^-$,

$$\mathcal{A}_{\pi^{+}\pi^{-}} = +0.33 \pm 0.06(stat) \pm 0.03(syst)$$

$$\mathcal{S}_{\pi^{+}\pi^{-}} = -0.64 \pm 0.08(stat) \pm 0.03(syst)$$

excluded $23.8^{\circ} < \phi_2 < 66.8^{\circ}$ (isospin analysis, Belle only).

- $\mathcal{B}(B^0\to\rho^0\rho^0)$ measured with 2.9σ significance,

$$\mathcal{B}(B^0 \to \rho^0 \rho^0) = (1.02 \pm 0.3(stat) \pm 0.22(syst)) \times 10^{-6}$$

first evidence of $B^0 \to f_0 \rho^0$, $\phi_2 = (91.0 \pm 7.2)^\circ$ (isospin analysis, Belle + W.A.)