

Measurements of ϕ_3 at Belle

Kentaro Negishi (Tohoku Univ.) on behalf of the Belle collaboration

EPS-HEP 2013 @ Stockholm

KEKB and Belle

KEKB peak luminosity has world record in e^+e^- collider 2.11 × 10³⁴ cm⁻² s⁻¹

- Belle started in 1999
 - Experiment designed for $\sin 2\phi_1$ measurement
 - Data taking is finished in 2010
- Belle recorded ~772 M BB pairs as the final sample

1. Introduction

ϕ_3 measurements from B \rightarrow DK

• Access ϕ_3 via interference between $B \rightarrow DK$ and $B \rightarrow \overline{D}K$

- Relative weak phase is ϕ_3
- Relative strong phase is $\delta_{\rm B}$

•
$$r_B = \frac{|A_{\text{supp.}}|}{|A_{\text{allowed}}|} \sim \frac{V_{ub}V_{cs}^*}{V_{cb}V_{us}^*} \times [\text{color supp.}]$$

= 0.1 - 0.2

3 unknowns,
2 observables per mode

ϕ_3 measurements from B \rightarrow DK

- Reconstruct D in final states accessible to both D^0 and $\overline{D}{}^0$
 - D = D_{CP}, CP eigenstates such as K⁺K⁻, $\pi^{+}\pi^{-}$, K_s π^{0}
 - GLW method (Gronau-London-Wyler)
 - − D = D_{sup}, Doubly-Cabibbo-suppressed decay such as $D^0 \rightarrow K^+\pi^-$
 - ADS method (Atwood-Dunietz-Soni)
 - Three-body decay such as $D \rightarrow K_s \pi^+ \pi^-$, $K_s K^+ K^-$
 - GGSZ (Dalitz) method (Giri-Grossman-Soffer-Zupan)
- No penguin, no other significant contamination to ϕ_3
 - Charm mixing and charm CPV are both negligible [Grossman, Soffer, Zupan, PRD 72, 031501 (2005)]
- Different B decay modes (DK, D*K, DK*)
 - $-\phi_3$ is common, (r_B, δ_B) are mode dependent
 - Resolve ϕ_3 from multiple measurements

2. Previous Belle Result

Review of Dalitz analysis Review of GLW and ADS Combine Dalitz ADS & GLW result

Review of Dalitz ($B^{-} \rightarrow [K_{S}\pi\pi]_{D}K^{-}$)

PRD 81, 112002 (2010) 657 M BB

Model dependent analysis

$\phi_3 = (80.8 + 13.1 \pm 5.0 \pm 8.9)^{\circ}$
$r_{\rm B} = 0.161^{+0.040}_{-0.038} \pm 0.011^{+0.050}_{-0.010}$
$\delta_{\rm B}$ = (137.4 $^{+13.0}_{-15.7} \pm 4.0 \pm 22.9)^{\circ}$

772M BB Model independent analysis

 $\varphi_{3} = (77.3 \pm 14.9 \pm 4.1 \pm 4.3)$ r_B = 0.145 ± 0.030 ± 0.010 ± 0.011 $\delta_{B} = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^{\circ}$

Kentaro Negishi

Review of GLW and ADS ($B^{-} \rightarrow DK^{-}$)

Determination of ϕ_3 with Belle D⁰K, D*⁰K result

GGSZ only $\phi_3 = (82^{+18}_{-23})^{\circ}$ GGSZ + ADS $\phi_3 = (70^{+37}_{-24})^{\circ}$ GGSZ + ADS + δ_D $\phi_3 = (68\pm 22)^{\circ}$ GGSZ + ADS + GLW + δ_D $\phi_3 = (68^{+15}_{-14})^{\circ}$

cf. CKM fitter WA : $\phi_3 = (66 \pm 12)^{\circ}$, from indirect CKM fit (67.2^{+4.4}/_{-4.6})°

Here, δ_D is obtained from D⁰- \overline{D}^0 mixing at Belle, BaBar, CLEO and so on.

3. New Belle Results

 $B^{\pm} \rightarrow [K\pi\pi^0]_D K^{\pm} ADS$

B[±] \rightarrow DK[±], D \rightarrow K $\pi\pi^0$ ADS

$$\begin{aligned} 2 \text{ observables} \\ R_{ADS} &= \frac{\left[\Gamma(B^- \rightarrow [K^+\pi^-\pi^0]_D K^-) + \Gamma(B^+ \rightarrow [K^-\pi^+\pi^0]_D K^+) \right]}{\Gamma(B^- \rightarrow [K^-\pi^+\pi^0]_D K^-) + \Gamma(B^+ \rightarrow [K^+\pi^-\pi^0]_D K^+)} \right] \\ Cabibbo Suppressed \\ &= r_B^2 + r_D^2 + 2r_B r_D R_{K\pi\pi^0} \cos \phi_3 \cos(\delta_B + \delta_D^{K\pi\pi^0}) \\ A_{ADS} &= \frac{\Gamma(B^- \rightarrow [K^+\pi^-\pi^0]_D K^-) - \Gamma(B^+ \rightarrow [K^-\pi^+\pi^0]_D K^+)}{\Gamma(B^- \rightarrow [K^+\pi^-\pi^0]_D K^-) + \Gamma(B^+ \rightarrow [K^-\pi^+\pi^0]_D K^+)} \\ CP Asymmetry of signal (suppressed mode) \\ &= \frac{2r_B r_D R_{K\pi\pi^0} \sin \phi_3 \sin(\delta_B + \delta_D^{K\pi\pi^0})}{R_{ADS}} \\ \bullet \text{ Integrated over } \mathbf{D} \rightarrow \mathbf{K}\pi\pi^0 \text{ Dalitz space} \\ R_{K\pi\pi^0} e^{i\delta_{K\pi\pi^0}} &= \frac{\int d\vec{\mathbf{m}} A_{DCS}(\vec{\mathbf{m}}) A_{CF}(\vec{\mathbf{m}}) e^{i\delta(\vec{\mathbf{m}})}}{\sqrt{\int d\vec{\mathbf{m}} A_{DCS}^2 \int d\vec{\mathbf{m}} A_{CF}^2}} \\ \bullet \mathbf{r}_B, \, \delta_B \text{ are common in } \mathbf{B}^{\pm} \rightarrow \mathbf{D}\mathbf{K}^{\pm} \\ \bullet \mathbf{r}_D &\equiv \frac{\Gamma(D^0 \rightarrow K^+\pi^-\pi^0)}{\Gamma(D^0 \rightarrow K^-\pi^+\pi^0)} = (2.20 \pm 0.10) \times 10^{-3} \text{ from PDG} \end{aligned}$$

$B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K\pi\pi^{0} ADS$ analytical strategy

- Selection criteria
 - Particle ID : efficiency ~ 90 %, fake rate ~ 10 %
 - $-\pi^0$ reconstruction
 - each γ : E_{γ} > 50 MeV at calorimeter
 - $P_{\pi 0} > 0.4 \text{ GeV/c in CM}$
 - D mass < 3 σ

$$-\mathbf{m}_{bc} < 3 \sigma : m_{bc} \equiv \sqrt{E_{beam}^2 - |\vec{p}_B|^2}$$

- BCS : χ^2_{min} (D mass, m_{bc})

$$\begin{array}{c} E_{\text{beam}} \\ \textbf{(} \overrightarrow{P}_{\text{B}}, E_{\text{B}} \textbf{)} \end{array}$$

: Beam energy at CM : 4-momentum of reconstructed B at CM

- Veto D* event and double-miss PID
- qq BG suppression, using neural network
- Detection efficiency = (10.9 ± 0.1) %

B[±] \rightarrow DK[±], D \rightarrow K $\pi\pi^{0}$ ADS analytical strategy 2

- Signal are extracted from 2D fit of ΔE and qq BG suppression neural net output NN'
 - $-\Delta E \equiv E_B E_{\text{beam}}$ Energy difference : Signal ~ 0 GeV
 - NN' is obtained from event topology parameters
 - Fit parameters

•
$$N_{sup.}, A_{ADS}, N_{fav.}$$

 $N_{D\pi}$
BB BG shape on $\Delta E, N_{BB}$
 qq BG shape on $\Delta E, N_{qq,...}$
 $R_{ADS} = \frac{N_{sup.}/eff_{sup.}}{N_{fav.}/eff_{fav.}}$
BB BG (e.g. D* π , D ρ , D*K ...)

B[±] \rightarrow DK[±], D \rightarrow K $\pi\pi^{0}$ ADS result R_{ADS}

Suppressed mode signal is seen at 3.5 $\sigma.$

ΔE (upper) and NN' (lower) distributions
Blue : total
Red : DK signal
Magenta : Dπ
Green : BB BG
Dotted Blue : continuum BG

Result
 Belle 772 M BB
 Preliminary

$$N_{sup.} = 77 \pm 24$$

 $N_{fav.} = 3871 \pm 90$

 $R_{ADS} = (1.98 \pm 0.62 \pm 0.23) \times 10^{-2}$ cf. BaBar 474 M $R_{ADS} = (0.91^{+0.82+0.14}_{-0.76-0.37}) \times 10^{-2}$

B[±] \rightarrow DK[±], D \rightarrow K $\pi\pi^{0}$ ADS result A_{ADS}

ΔE (upper) and NN' (lower) distributions

Blue	: total
Red	: DK signal
Green	: Dπ
Cyan	: BB BG
Magenta	: continuum BG

• Result Belle 772 M BB Preliminary $R_{ADS} = (1.98 \pm 0.62 \pm 0.23) \times 10^{-2}$ $A_{ADS} = 0.41 \pm 0.30 \pm 0.05$ First $A_{ADS}(D \rightarrow K\pi\pi^{0})$ measurement!

Summary

- Combined ϕ_3 from Belle before EPS -(68⁺¹⁵₋₁₄)°
- New results at EPS
 - $-B^{\pm}\rightarrow [K\pi\pi^0]_D K^{\pm} ADS$
 - Signal is seen at 3.5 σ .
 - $R_{ADS} = (1.98 \pm 0.62 \pm 0.23) \times 10^{-2}$
 - A_{ADS} = 0.41 ± 0.30 ± 0.05, **First measurement**
- Many other analysis for ϕ_3 measurement using full data sample are ongoing.