Sterile neutrinos in the $3 + s$ scenario and solar data

C.R. Das and João Pulido

Centro de Física Teórica de Partículas (CFTP)
Departamento de Física
Instituto Superior Técnico - Universidade Técnica de Lisboa
Avenida Rovisco Pais, 1
1049-001 Lisboa, Portugal

(EPSHEP 2013)
3+s neutrino schemes were introduced some time ago to account for anomalies occurring in very short baseline experiments ($L \sim \text{few} \times 10m$): the accelerator (LSND, KARMEN, ICARUS, MiniBooNE), reactor and Gallium anomalies. A short oscillation length is needed, implying an oscillation to one or two sterile states ($s=1$ or 2) with

$$\Delta m_{41}^2, \Delta m_{51}^2 = O(1 \text{ eV}^2).$$

Leading terms (one sterile only):
- Neutrino appearance (accelerator experiments):

$$P_{\nu_\mu \rightarrow \nu_e} = 4 \sin^2 \frac{\Delta m_{41}^2}{4E} L |u_{e4}|^2 |u_{\mu4}|^2$$

- Neutrino disappearance (reactor experiments + Gallium calibration):

$$P_{\nu_e \rightarrow \nu_e} = 1 - 4 \sin^2 \frac{\Delta m_{41}^2}{4E} L |u_{e4}|^2 (1 - |u_{e4}|^2)$$
Limits are given in the literature in terms of ‘effective’ angles:

\[
\sin^2 2\theta_{e\mu} = 4|u_{e4}|^2|u_{\mu4}|^2, \quad \sin^2 2\theta_{ee} = 4|u_{e4}|^2(1 - |u_{e4}|^2)
\]

- \(\sin^2 2\theta_{e\mu} = (4 - 10) \times 10^{-3}\)

\[
\Delta m^2 = (4 - 7) \times 10^{-1}\,\text{eV}^2 \text{ (accelerator)}
\]

- \(\sin^2 2\theta_{ee} = (70 - 200) \times 10^{-3}\)

\[
\Delta m^2 = (2 - 3)\,\text{eV}^2 \text{ (reactor, Ga)}
\]
Introduction

Common prejudice asserts that the solar neutrino problem is by now ‘solved’ which is not the case. In fact an estimation made by the Borexino Collaboration shows that there is a gap in the knowledge of the neutrino survival probability in the vacuum matter transition region.

Moreover, besides the long standing problem of the flatness of the SK spectrum which LMA fails to explain, also the LMA CC spectrum prediction seems to proceed in the wrong direction.

This lead us to investigate different shapes of the neutrino survival probability from the LMA one.
Hence: introduce light sterile neutrinos and investigate possible ranges of Δm_{new}^2, θ_{new}. Adequate shapes for probability were found with sterile neutrinos which are quasi degenerate with respect to the active ones, ($\Delta m_{new}^2 = O(10^{-5}eV^2)$) with small mixing to these.

So they are different from the ‘conventional’ steriles that are suggested by accelerator, reactor and Ga anomalies.

The latter do not play any major role in solar neutrino oscillations.
Sterile neutrinos in the 3+ s scenario and solar data, C.R. Das and João Pulido
The Model

CC spectrum (reduced rate):

![Graph showing the CC spectrum with T_{eff} values on the x-axis and r_{CC} (Fraction of SSM) on the y-axis.]

Neutrino parameters $\sin \theta_{14} = 0.04$, $\Delta m_{41}^2 = 10^{-5} \text{eV}^2$.

STERILE NEUTRINOS IN THE $3 + s$ SCENARIO AND SOLAR DATA, C.R. Das and Joao Pulido.
The Model

Other model predictions:

Rates

<table>
<thead>
<tr>
<th></th>
<th>Ga(All, ≤ Dec.2007) (SNU)</th>
<th>CI (SNU)</th>
<th>SNO(CC) ($\times 10^6$ cm2 s$^{-1}$)</th>
<th>SNO(NC) ($\times 10^6$ cm2 s$^{-1}$)</th>
<th>SNO(ES) ($\times 10^6$ cm2 s$^{-1}$)</th>
<th>SK ($\times 10^6$ cm2 s$^{-1}$)</th>
<th>Borexino ($\times 10^6$ cm2 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>66.1 ± 3.1</td>
<td>2.56 ± 0.16</td>
<td>1.67 ± 0.05</td>
<td>5.54 ± 0.33</td>
<td>1.77 ± 0.24</td>
<td>2.32 ± 0.04</td>
<td>2.40 ± 0.4</td>
</tr>
<tr>
<td>LMA</td>
<td>62.4 ± 2.70</td>
<td>2.70 ± 0.07</td>
<td>1.69 ± 0.34</td>
<td>5.22 ± 0.21</td>
<td>2.21 ± 0.09</td>
<td>2.21 ± 0.05</td>
<td>2.27 ± 0.1</td>
</tr>
<tr>
<td>Model</td>
<td>61.0 ± 2.60</td>
<td>2.60 ± 0.08</td>
<td>1.61 ± 0.34</td>
<td>5.13 ± 0.21</td>
<td>2.14 ± 0.09</td>
<td>2.14 ± 0.05</td>
<td>2.12 ± 0.05</td>
</tr>
</tbody>
</table>

We use for SSM AGSS09ph (arXiv: 0910.3690).
Sterile neutrinos in the $3 + s$ scenario and solar data, C.R. Das and João Pulido

The Model

Model

- σ: -1.63
- Ga: 0.18
- Cl: -0.67
- SNO$_{CC}$: -0.89
- SNO$_{NC}$: 1.59
- SNO$_{ES}$: -2.8
- SK: -0.68

LMA

- σ: -1.19
- Ga: 0.64
- Cl: 0.23
- SNO$_{CC}$: -0.66
- SNO$_{NC}$: 1.76
- SNO$_{ES}$: -1.72
- SK: -0.32

Sterile neutrinos in the $3 + s$ scenario and solar data, C.R. Das and João Pulido

EPSHEP, 18 - 24 July, 2013 10 / 17
\[\chi^2_{\text{rates}}(LMA) = 8.1/5 \text{ d.o.f.} \]
\[\chi^2_{\text{rates}}(\text{model}) = 16.0/5 \text{ d.o.f.} \]

Two Caveats:
1. Contribution from Ga rate in \(\chi^2\) is extremely large: had we taken Ga/GNO data from the period 1998/03 (62.9 ± 5.4 ± 2.5 SNU) the result would be:

\[\chi^2_{\text{rates}}(LMA) = 3.6/5 \text{ d.o.f.} \]
\[\chi^2_{\text{rates}}(\text{model}) = 9.4/5 \text{ d.o.f.} \]

So \(\chi^2_{\text{rates}}\) strongly depends on the Ga data period one considers.
Moreover Ga rate has been decreasing all along the period of data taking:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallex/GNO</td>
<td>77.5 ± 6.2± 4.3</td>
<td>62.9 ± 5.4 ± 2.5</td>
</tr>
<tr>
<td>SAGE</td>
<td>79.2 ± 8.6± 4.3</td>
<td>63.9 ± 5.0</td>
</tr>
</tbody>
</table>

This is suggestive that Ga could preferably be removed from \(\chi^2_{rates} \) calculation.
If we do so:

$$\chi^2_{rates}(LMA) = 4.1/4 \text{ d.o.f. (no Ga)}$$

$$\chi^2_{rates}(model) = 3.7/4 \text{ d.o.f. (no Ga)}$$

which shows an improvement in the rates fitting (LMA \rightarrow sterile ν model):

$$\chi^2_{rates}(model) < \chi^2_{rates}(LMA)$$
ES spectrum (reduced rate):

\[r_{ES}(E_e) \]

\[\chi^2_{ES \ spectrum}(LMA) = 19.2/16 \text{d.o.f.}, \quad \chi^2_{ES \ spectrum}(model) = 19.5/16 \text{d.o.f.} \]
Discussion

If we resort to SK 2008 data the result seems more favourable:

![Graph showing the comparison between SK 2008 data and the LMA model for sterile neutrinos in the 3+ s scenario and solar data.]

SK 2008

LMA Model

E_{eff} (MeV)

r_{ES} (E_{e})
Recalling charged current (CC) reduced rate:

\[\chi^2_{\text{CC spectrum}} (LMA) = 24.3/13 \text{ d.o.f.} \]

\[\chi^2_{\text{CC spectrum}} (\text{model}) = 21.6/13 \text{ d.o.f.} \]
Conclusions

- We still need to fill the gap in our knowledge of the solar neutrino survival probability in the intermediate energy region (i.e. the vacuum matter transition).
- LMA prediction for CC spectrum seems to point in the wrong direction as T_{eff} decreases.
- LMA provides no clue as to why SK spectrum is flat.
- Oscillations to sterile ν's which are almost degenerate with the active ones ($\Delta m^2 = 10^{-5}\text{eV}^2$, $\sin\theta_{14} = 0.04$) lead to a CC spectrum pointing in the right direction and explain the flatness of the SK spectrum.
- We would be in presence of a 5th or 6th sterile neutrino. This would add to the already confusing situation concerning the sterile neutrinos.
- However as an example, the story of neutrino oscillations reminds us that a confusing picture at the start may eventually emerge, after an accumulation of experimental tests for several years, as a clear and positive one.