

A dijet in a 5 TeV pPb collision

Probing pPb collisions with jets in CMS

Matthew Nguyen Laboratoire Leprince-Ringuet IN2P3/CNRS – Ecole Polytechnique EPS-HEP Stockholm July 19th, 2013

Why collide protons and lead?

- pPb is an essential control system for studies of hot nuclear matter in PbPb
- Initial state effects
 - Nuclear PDFs, low x gluon saturation
 - Parton energy loss
- Final state effects
 - Hydrodynamic flow
 - o Jet quenching?

The 2013 pPb Run

- In 2013 the LHC delivered pPb collisions at 5.02 TeV/nucleon
- CMS recorded ~ 31nb⁻¹
- Also a short pp run at 2.76 TeV (~ 5.5 pb⁻¹)
- Now have similar statistics for hard probes in pp and PbPb at 2.76 TeV and pPb at 5.02 TeV

Date (UTC)

Our pPb results so far

- Dijets in pPb: <u>HIN-13-001</u> (this presentation)
- The Ridge in pPb: HIN-12-015, <u>arXiv:1210.5482</u> (Monika's talk)
- Two and four-particle correlations in pPb: HIN-13-002, <u>arXiv:1305.0609</u> (Monika's talk)
- PID spectra in pPb: <u>HIN-12-016</u> (Krisztian's talk)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN

Dijet Production in AA Collisions

Jet quenching in PbPb collisions

Observed as a pronounced dijet
 p_T imbalance in central collisions

arXiv:1202.5022

More about jet quenching in PbPb in Pelin's talk in this session

6

Probing PDFs

Kinematic reach for CMS, pPb @ $\sqrt{s} = 8.8 \text{ TeV} (0.1 \text{ pb}^{-1})$

Salgado, et. al. J Phys G39 (2012) 015010

Inclusive jets access high Q^2 and x ~ 10^{-4}

- p_{T,1} > 120 GeV/c
 p_{T,2} > 30 GeV/c
- $\Delta \phi_{12} > 2\pi/3$

pPb Event Selection HIN-13-001

- Double sided selection: At least one tower above threshold required in forward and backward HF. Rejects EM, diffractive events and beam backgrounds
- Inelastic cross section is binned in HF E_T (η > 4)
- HF energy is (loosely) correlated to the # of participating nucleons

pPb Dijet Asymmetry HIN-13-001

No sign of the anomalous dijet imbalance, i.e., jet quenching

9

More quantitatively ...

HIN-13-001

pPb dijet asymmetry consistent with MC to within systematic uncertainties

Nuclear Parton Distributions

Source: François Arleo and Jean-Philippe Guillet

http://lapth.cnrs.fr/npdfgenerator/

- Distributions of partons in nuclei are modified by ~10% for the relevant Q²
- Some disagreement between various global fit analyses

Kinematics

$$\eta_{dijet} = \frac{\eta_1 + \eta_2}{2}$$

Center of mass frame

An event with x_2 (proton) > x_1 (lead)

Lab frame

Pb 1.58 TeV/nucleon

Dijet η distribution is symmetric in the center of mass frame

LHC delivers asymmetric collisions, boost gives rise to trivial η asymmetry

Translating dijet η to x_1

Dijet selection: Leading jet $p_{T,1} > 120 \text{ GeV/c}$ Subleading jet $p_{T,2} > 30 \text{ GeV/c}$ $|\Delta \phi_{12}| > 2\pi/3$

Dijet Pseudorapidity

13

HIN-13-001

Results qualitatively consistent with nPDF expectations Quantitative comparisons to be different global fits still on the

Dijet Pseudorapidity

13

Results qualitatively consistent with nPDF expectations Quantitative comparisons to be different global fits still on the

Comparison to nPDF predictions

- Agreement with EPS09 nPDFs within systematics
- Data show good sensitivity to nPDFs

Conclusions

- Careful studies in pA are essential to understand effects in AA and are interesting in their own right
- No jet quenching observed in pA collisions
- Sensitivity to nPDFs established
- Results are in agreement with the EPS09 nPDFs

"Centrality" Dependence

- Significant dependence of dijet <η> on forward calorimeter energy
- Difficult to relate to impact parameter dependence of nPDFs,

HIN-13-001