Two and Four Particle Correlations in pPb Collisions

 with CMS
For the CMS Collaboration

July 18, 2013
Monika Sharma at EPS HEP-2013, Stockholm, Sweden

Motivation: hydrodynamics

Azimuthal particle correlations in AA collisions

Final momentum anisotropy

Elliptic, $\mathbf{v}_{\mathbf{2}}$
Triangular, \mathbf{v}_{3}
Quantified by coefficients of a Fourier sexjes

Fourier series: $\mathrm{dN} / \mathrm{d} \phi=1+2 \mathrm{v}_{1} \cos (\phi)+2 \mathrm{v}_{2} \cos (2 \phi)+2 \mathrm{v}_{3} \cos (3 \phi)+\ldots$

Motivation: establishing baseline of Pb Pb collisions

Controlled environment? pPb collisions

\checkmark No deconfined medium is expected to be formed?
\checkmark What about azimuthal anisotropy in pPb collisions?

Motivation

Flow?
(d) $\mathrm{N}>110,1.0 \mathrm{GeV} / \mathrm{c}<\mathrm{p}_{\mathrm{T}}<3.0 \mathrm{GeV} / \mathrm{c}$

- Long range correlations can be explained by flow harmonics in PbPb
- Are these correlations in pPb also related to hydrodynamic flow?
- Or CGC?

Data sets, trigger selection and multiplicity distribution

- Data sets
$>2013 \mathrm{pPb}+\mathrm{Pbp}, 31 \mathrm{nb}^{-1}$
$>2011 \mathrm{PbPb}, 2.3 \mu \mathrm{~b}^{-1}(50-100 \%)$
- Triggers
$>$ Minimum bias trigger
$>$ High multiplicity triggers in 2013

Track ($\mathrm{p}_{\mathrm{T}}>0.4 \mathrm{GeV} / \mathrm{c},|\eta|<2.4$) multiplicity distribution in pPb for different triggers

The fraction of events in $300 \leq \mathrm{N}_{\text {trk }}$ offline <350 is about 10^{-7} with respect to all MinBias events.

Data sets, trigger selection and multiplicity distribution

- Data sets
$>2013 \mathrm{pPb}+\mathrm{Pbp}, 31 \mathrm{nb}^{-1}$
$>2011 \mathrm{PbPb}, 2.3 \mu \mathrm{~b}^{-1}(50-100 \%)$
- Triggers
$>$ Minimum bias trigger
$>$ High multiplicity triggers in 2013

Track multiplicity distribution in MinBias pPb and $\mathrm{PbPb} 50-100 \%$

Results: Two-particle correlations in PbPb and pPb

PbPb

(a) CMS PbPb $\sqrt{\mathrm{S}_{\mathrm{NN}}}=\mathbf{2 . 7 6} \mathrm{TeV}, \mathbf{2 2 0} \leq \mathrm{N}_{\text {trk }}^{\text {offline }}<\mathbf{2 6 0}$

$1<\mathrm{P}_{\mathrm{T}}^{\text {assoc }}<3 \mathrm{GeV} / \mathrm{c}$

pPb
(b) CMS pPb $\sqrt{\mathrm{S}_{\mathrm{NN}}}=\mathbf{5 . 0 2} \mathrm{TeV}, 220 \leq \mathrm{N}_{\text {trk }}^{\text {offline }}<260$

$$
\text { PLB } 724 \text { (2013) } 213
$$

- PbPb and pPb use the same multiplicity selection, $220=<\mathrm{N}_{\text {trk }}^{\text {offline }}<260$
- Very strong long-range correlations in pPb

July 18, 2013
Monika Sharma at EPS HEP-2013, Stockholm, Sweden

Discovery: pPb pilot run

- Explore in detail the multiplicity and p_{T} dependence of the 2-particle correlations
- New observable: 4-particle correlations add greater sensitivity to collective effects

Discovery: pPb pilot run

- Explore in detail the multiplicity and p_{T} dependence of the 2-particle correlations
- New observable: 4-particle correlations add greater sensitivity to collective effects

2-particle correlation method

Shift the distribution to zero yield at minimum (ZYAM)

Physics Letters B

718 (2013) 795-814 and extract the associated yield
$\mathrm{v}_{\mathrm{n}}\{2,|\Delta \eta|>2\}\left(\mathrm{p}_{\mathrm{T}}\right)=\frac{\mathrm{V}_{\mathrm{n} \Delta}\left(\mathrm{p}_{\mathrm{T}}, \mathrm{p}_{\mathrm{T}}^{\text {ref }}\right)}{\sqrt{\mathrm{V}_{\mathrm{n} \Delta}\left(\mathrm{p}_{\mathrm{T}}^{\text {ref }}, \mathrm{p}_{\mathrm{T}}^{\text {ref }}\right)}}$
Fourier decomposition:
$\frac{d N^{\text {par }}}{d \Delta \phi} \sim 1+2 \sum_{n=1} V_{n \Delta} \cos (n \Delta \phi)$
Assuming factorization:
$\mathrm{V}_{n \Delta}=\mathrm{v}_{n}\left(\mathrm{p}_{\mathrm{T}}^{\text {trig }}\right) \times \mathrm{v}_{n}\left(\mathrm{p}_{\mathrm{T}}^{\text {assoc }}\right)$

Multi-particle correlations

Four particle correlations (Q-cumulant method): remove 2 and 3 particle correlations

$$
\left\langle e^{i n\left(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}\right)}\right\rangle-\left\langle e^{i n\left(\varphi_{1}-\varphi_{3}\right)}\right\rangle\left\langle e^{i n\left(\varphi_{2}-\varphi_{4}\right)}\right\rangle-\left\langle e^{i n\left(\varphi_{1}-\varphi_{4}\right)}\right\rangle\left\langle e^{i n\left(\varphi_{2}-\varphi_{3}\right)}\right\rangle
$$

Associated yield

Yield vs $\mathbf{p}_{\text {T }}$

- Similar p_{T} dependence for PbPb and pPb
- Larger in $\mathrm{PbPb}(|\Delta \eta|>2)$
- Expected behavior due to jets (Fig. b)

Yield vs multiplicity

- Yield becomes significant at $\mathrm{N} \sim 40-50$, followed by a monotonic rise
- Larger in $\mathrm{PbPb}(|\Delta \eta|>2)$

$\mathrm{v}_{\mathbf{2}}$ in PbPb and pPb

PLB 724 (2013) 213
Dash-dot line: peripheral subtracted
multiplicity

- v_{2} shows similar shape in pPb and PbPb , but is smaller in pPb
- hydro calculation agrees with $\mathrm{v} 2\{4\}$

July 18, 2013
Monika Sharma at EPS HEP-2013, Stockholm, Sweden

v_{3} in PbPb and pPb

PLB 724 (2013) 213
Dash-dot line: peripheral subtracted
multiplicity

- v_{3} shows similar shape in pPb and PbPb ; magnitude comparable
- Hydro prediction: $\mathrm{v}_{3}\{\mathrm{PP}\}$, not including fluctuations

Multiplicity dependence of $\mathbf{v}_{\mathbf{2}}$

- v_{2} is smaller in pPb than in PbPb ; turns on at $\mathrm{N} \sim 40-50$

Multiplicity dependence of \mathbf{v}_{3}

PLB 724 (2013) 213

- v_{3} is essentially the same in pPb and PbPb ; turns on at $\mathrm{N} \sim 40-50$

Summary

Comparison of high statistics, high multiplicity pPb and PbPb data as a function of p_{T} and multiplicity

- Large $\mathrm{v}_{2}\{4\}$ and $\mathrm{v}_{3}\{2\}$ in pPb
- Associated yield, $\mathrm{v}_{2}\{4\}$ and $\mathrm{v}_{3}\{2\}$ become apparent at about the same multiplicity; $\mathrm{N} \sim 50$
$-\mathrm{v}_{3}\{2\}$ is essentially the same in pPb and PbPb at the same multiplicity

Back-up

Peripheral subtraction

- Away-side correlations contain non-flow effects
- Subtract the data for high multiplicity by low multiplicity to correct for this

Fourier decomposition:

$$
\frac{1}{N_{\text {trig }}} \frac{\mathrm{d} N^{\text {pair }}}{\mathrm{d} \Delta \phi}=\frac{N_{\text {assoc }}}{2 \pi}\left\{1+\sum_{n} 2 V_{n \Delta} \cos (n \Delta \phi)\right\}
$$

Subtracting peripheral correlations in $\mathrm{v}_{2}, \mathrm{v}_{3}$ calculations:

$$
V_{n \Delta}(\text { cent })-V_{n \Delta}(\text { peri }) \times \frac{N_{\text {assoc }}(\text { peri })}{N_{\text {assoc }}(\text { cent })} \times \frac{Y^{\text {jet }}(\text { cent })}{Y^{\text {jet }}(\text { peri })}
$$

Subtract $\mathrm{N}_{\text {trk }}{ }^{\text {offine }}<20(70-100 \%)$ to avoid removing signal ($\mathrm{N}_{\text {trk }}$ offline ~ 40)

Account for the fact that jet correlation increases with multiplicity

Test our procedure in HIJING

Weighted by near-side jet yield, most of non-flow correlations are subtracted

PbPb vs $\mathrm{pPb}: \mathrm{p}_{\mathrm{T}}$ dependence

$\mathbf{v}_{\mathbf{2}}$ in PbPb and $\mathbf{~ p P b ~}$

- v_{2} is smaller in pPb than in PbPb
- Peripheral subtraction has a small effect at high multiplicity

$$
v_{2}\{2\}=\sqrt{<v_{2}>^{2}+\sigma_{v_{2}}^{2}} \quad v_{2}\{4\}=\sqrt{<v_{2}>^{2}-\sigma_{v_{2}}^{2}} \quad \frac{\sigma_{v_{2}}}{v_{2}}=\sqrt{\frac{v_{2}^{2}\{2\}-v_{2}^{2}\{4\}}{v_{2}^{2}\{2\}+v_{2}^{2}\{4\}}}
$$

Hydro-flow is not incorporated in the HIJING MC model $-c_{2}\{4\}$ consistent with zero for small bin width (2 or 5), while becomes nonzero for big bin width (30)
$\%$ The effect becomes larger going to more peripheral collisions
$\%$ In pPb data, $c_{2}\{4\}$ crosses zero and becomes negative at certain multiplicity. This is an indication of the onset of multi-particle correlation effect
$\%$ A bin width of 5 is chosen for the $v_{2}\{4\}$ analysis
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN13002

