Measurement of CP violation in charmless two-body B decays at LHCb

Outline

- Importance of charmless two-body B decays
- First evidence for the two body charmless baryonic decay B⁰→pp → NEW <
- Branching fractions and CP asymmetries in B[±]→K_sh[±] decays (h=π, K)
- Direct CP asymmetries in $B^{0}_{(s)} \rightarrow K^{+}\pi^{-}$ decays

– First observation of CP violation in B_s^0 decays

• Time-dependent CP asymmetries in $B^0 \rightarrow \pi^+\pi^-$ and $B^0_s \rightarrow K^+K^-$

Importance of charmless two-body B decays

- Charmless two-body B decays provide valuable information for:
 - improving knowledge of CKM matrix
 - UT angles and the B_s mixing phase
 - validating theoretical tools to deal with QCD contributions
 - QCD factorization, pQCD, SCET, ...
 - constraining New Physics

 CP-violation observables and branching fractions can differ from Standard Model predictions

- As penguin topologies are generally sizeable, effects from New Physics in loops may be sizeable as well
- Theoretical interpretation is however not straightforward, because of unknown hadronic parameters in the amplitudes

First evidence for the baryonic decay $B_{(s)}^0 \rightarrow p\overline{p}$

- Still unobserved decays
 - Any measurement of BR < 10⁻⁷ will rule out all the current theoretical predictions

efficiencies

• Phys. Rev. D43 (1991) 1599

vields

- Phys. Rev, D66 (2002) 014020
- Ann.Rev.Nucl.Part.Sci. 59 (2009) 215

- Analysis strategy
 - Relative branching ratio measurement
 - Event selection based on multivariate algorithm
 - Boosted Decision Tree, optimized in order to achieve the best significance on signal yields

 $\mathcal{B}(B^0_{(s)} \to p\overline{p}) = \frac{N(B^0_{(s)} \to p\overline{p})}{N(B^0 \to K^+\pi^{-1})}$

- Determination of efficiencies
 - Mainly determined from Monte Carlo and cross-checked with calibration samples from data

Main systematic uncertainties Hadronization fractions

 $f_d/f_{d(s)} \cdot \mathcal{B}(B^0 \to K^+\pi^-)$

First evidence for the baryonic decay $B_{(s)}^0 \rightarrow p\overline{p}$

Using Wilks' theorem:

The Feldman-Cousins frequentist method has been used to determine the confidence intervals

- Likelihood ratio with respect to no-signal hypothesis
- 3.3 σ significance for B⁰ (including systematics)
- 1.9 σ significance for B_s (including systematics)

 $\begin{array}{c} \mathcal{B}(B^{0} \to p\overline{p}) = (1.47 \, {}^{+0.62}_{-0.51} \, {}^{+0.35}_{-0.14}) \times 10^{-8} & \text{at} & 68.27\% & \text{CL} \\ \mathcal{B}(B^{0} \to p\overline{p}) = (1.47 \, {}^{+1.09}_{-0.81} \, {}^{+0.69}_{-0.18}) \times 10^{-8} & \text{at} & 90\% & \text{CL} \end{array} \right\} \begin{array}{c} \text{First evidence at more} \\ \text{than } \mathbf{3}\sigma \\ \mathcal{B}(B^{0}_{s} \to p\overline{p}) = (2.84 \, {}^{+2.03}_{-1.68} \, {}^{+0.85}_{-0.18}) \times 10^{-8} & \text{at} & 68.27\% & \text{CL} \\ \mathcal{B}(B^{0}_{s} \to p\overline{p}) = (2.84 \, {}^{+3.57}_{-2.12} \, {}^{+2.00}_{-0.21}) \times 10^{-8} & \text{at} & 90\% & \text{CL} \end{array}$

Branching fraction and CP asymmetry measurements of the $B^{\pm} \rightarrow K_{s}\pi^{\pm}$ and $B^{\pm} \rightarrow K_{s}K^{\pm}$ decays

- Current experimental status
 - No evidence of CP violation
- Event selection
 - Based on multivariate algorithm (BDT)
 - Different optimization for $K_s\pi$ and K_sK final states
- Fits to the invariant mass spectra in order to extract signal yields and raw asymmetries
- Relative branching ratio determination
 - Selection efficiencies from Monte Carlo
 - − PID efficiencies from calibration samples of $D^* \rightarrow D^0(K\pi)\pi$ decays
- Correction to the raw asymmetries
 - − CP violation in $K_s \rightarrow small$
 - K_s regeneration from K_L interaction with the detector \rightarrow negligible in LHCb acceptance
 - Detection and production asymmetries determined from $B^{\pm} \rightarrow J/\psi K^{\pm}$ decays

Measurement	BaBar in units of 10^{-6}	Belle in units of 10^{-6}
$\mathcal{B}\left(B^{\pm} \to K^0 \pi^{\pm}\right)$	$23.9 \pm 1.1 \pm 1.0$	$23.97 \pm 0.53 \pm 0.71$
$\mathcal{B}\left(B^{\pm} \to \overline{K}{}^{0}K^{\pm}\right)$	$1.61 \pm 0.44 \pm 0.09$	$1.11 \pm 0.19 \pm 0.05$
$\mathcal{A}^{CP}\left(B^{\pm} \to K^0 \pi^{\pm}\right)$	$-0.029 \pm 0.039 \pm 0.010$	$-0.011 \pm 0.021 \pm 0.006$
$\mathcal{A}^{CP}\left(B^{\pm} \to \overline{K}{}^{0}K^{\pm}\right)$	$+0.10 \pm 0.26 \pm 0.03$	$+0.014 \pm 0.168 \pm 0.002$

$$A_{raw} = \frac{N(B^- \rightarrow K_s^0 h^-) - N(B^+ \rightarrow K_s^0 h^+)}{N(B^- \rightarrow K_s^0 h^-) + N(B^+ \rightarrow K_s^0 h^+)}$$

$$\frac{\mathcal{BR}(B^{-} \to K_{s}^{0}K^{-})}{\mathcal{BR}(B^{-} \to K_{s}^{0}\pi^{-})} = \frac{N(B^{-} \to K_{s}^{0}K^{-})}{N(B^{-} \to K_{s}^{0}\pi^{-})} \frac{\varepsilon(B^{-} \to K_{s}^{0}\pi^{-})}{\varepsilon(B^{-} \to K_{s}^{0}K^{-})}$$
Efficiency ratio

$$A_{CP} = A_{raw} - A_{Det.+Prod.} - A_{K_S^0}$$

$$A_{raw}(B^+ \to J/\psi K^+) = A_{CP} + A_{\text{Det.+Prod.}}$$

6

Search for the $B_c^{\pm} \rightarrow K_s K^{\pm}$ decay

 Feldman-Cousin's method has been used to estimate confidence intervals

$$r_{B_c^+} = \frac{f_c}{f_u} \cdot \frac{\mathcal{B}(B_c^+ \to K_{\rm s}^0 K^+)}{\mathcal{B}(B^+ \to K_{\rm s}^0 \pi^+)} < 5.1 \times 10^{-2} \text{ at } 90\% \text{ C.L.}$$

First upper limit on a charmless and bottomless B_c-meson decays

- Same strategy as for B[±] analysis
 - Dedicated optimization of BDT
 - Relative BR with respect to $B^{\pm} \rightarrow K_{S} \pi^{\pm}$
 - Main systematic uncertainty coming from the determination of selection efficiency
 - Performed by means of Monte Carlo

Direct CP asymmetries in $B_{(s)}^{0} \rightarrow K\pi$ **decays**

Precedent results

- Event selection is cut-based:
 - − Different optimization for $B^0 \rightarrow K^+\pi^$ and $B_s \rightarrow \pi^+K^-$
- Control of PID efficiencies
 - Determine the amount of crossfeed backgrounds under the peak
 - Calibrated from $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$
- Invariant mass fits in order to extract raw asymmetries
- Correction to the raw asymmetries
 - Detection asymmetry
 - Production asymmetry

Direct CP asymmetries in $B^{0}_{(s)}$ \rightarrow K π **decays**

- $K^+\pi^-/K^-\pi^+$ detection asymmetry is studied by means of $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$ and $D^{*+} \rightarrow D^0(K^+K^-)\pi^+$ and untagged $D^0 \rightarrow K^-\pi^+$ decays
- Production asymmetries are extracted directly from the $B^0 \rightarrow K^+\pi^-$ and $B_s \rightarrow \pi^+K^-$ samples
 - Production asymmetry determined from fits to untagged decay time spectra
 - No evidence of non-zero production asymmetry
- Main systematic uncertainties come from the determination of instrumental corrections to the raw asymmetries

 $A_{CP} (B^0 \rightarrow K\pi) = -0.080 \pm 0.007 (\text{stat}) \pm 0.003 (\text{syst}),$ Most precise measurement of this

quantity to date, 10.5σ from zero

 $A_{CP} (B_s^0 \rightarrow K\pi) = 0.27 \pm 0.04 (\text{stat}) \pm 0.01 (\text{syst}).$ First observation of CP violation in B_s decays, with significance of 6.5 σ

$$A(t) \approx A_{CP} + A_{\rm D} + A_{\rm P} \cos\left(\Delta m_{d(s)}t\right)$$

- Test using U-Spin $\Delta = \frac{A_{CP}(B^0 \to K^+ \pi^-)}{A_{CP}(B^0_s \to K^- \pi^+)} + \frac{\mathcal{B}(B^0_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} \frac{\tau_d}{\tau_s} = 0$
- Using LHCb results for branching ratios [JHEP 10 (2012) 037]

$$\Delta = -0.02 \pm 0.05 \pm 0.04$$

Time-dependent CPV in B⁰ $\rightarrow \pi^+\pi^-$ and B⁰_s $\rightarrow K^+K^-$

- Event selection is based on BDT algorithm
 - Different optimizations for $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
- Determination of B initial flavour is crucial:
 - In this analysis used only "Opposite Side" taggers
 - A neural network determines an event-by-event mistag probability
 - Samples divided into categories of predicted mistag
 - Simultaneous invariant mass and decay time fit with $B \rightarrow K\pi$ decays
 - Calibration of flavour tagging response: $\epsilon D^2{\approx}2.4\%$
 - Determination of B⁰ and B_s production asymmetries

 $A_P(B^0) = (0.6 \pm 0.9)\%$ $A_P(B_s) = (7 \pm 5)\%$

- Decay time resolution
 - Non-negligible dilution of the oscillation amplitude for the B_s→K⁺K⁻ decay
 - Studied from prompt charmonium and bottomonium decays to di-muons $\sigma_r = 50 \pm 5 \, \mathrm{fs}$

Time-dependent CPV in B⁰ $\rightarrow \pi^+\pi^-$

$$\mathcal{A}(t) = -C_f \cos(\Delta m_d t) + S_f \cos(\Delta m_d t)$$

 $C \rightarrow$ direct CP violation S \rightarrow mixing-induced CP violation

$$C_{\pi\pi} = -0.38 \pm 0.15 \text{ (stat)} \pm 0.02 \text{ (syst)},$$

$$S_{\pi\pi} = -0.71 \pm 0.13 \text{ (stat)} \pm 0.02 \text{ (syst)},$$

$$\rho(C_{\pi\pi}, S_{\pi\pi}) = 0.38.$$

Results are compatible with previous measurements from BaBar and Belle

The significance for ($C_{\pi\pi}$, $S_{\pi\pi}$) to differ from (0, 0) is 5.6 σ

Time-dependent CPV in B_s^0 \rightarrow K^+K^-

$$\mathcal{A}(t) = \frac{-C_f \cos(\Delta m_s t) + S_f \cos(\Delta m_s t)}{\cosh\left(\frac{\Delta \Gamma_s}{2}t\right) - A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_s}{2}t\right)}$$

$$C_{KK} = 0.14 \pm 0.11 \text{ (stat)} \pm 0.03 \text{ (syst)},$$

 $S_{KK} = 0.30 \pm 0.12 \text{ (stat)} \pm 0.04 \text{ (syst)},$
 $\rho(C_{KK}, S_{KK}) = 0.02.$

The significance for (C_{KK}, S_{KK}) to differ from (0, 0) is 2.7 σ

Conclusions (I)

- LHCb has recently obtained several results regarding charmless two-body B decays
- Search for baryonic decays of B^0 and B_s mesons using 0.9 fb⁻¹ @ $\sqrt{s} = 7$ TeV \ge NEW \le

– Limits on branching ratios of $B^0 \rightarrow p\overline{p}$ and $B_s \rightarrow p\overline{p}$

- First evidence of $B^0 \rightarrow p\overline{p}$ with 3.3 σ significance
- Measurement of branching ratios and CP asymmetries in $B^{\pm} \rightarrow K_{s}h^{\pm}$ decays using 1 fb⁻¹ @ $\sqrt{s} = 7$ TeV + 2 fb⁻¹ @ $\sqrt{s} = 8$ TeV
 - Results are compatible and competitive with B-factories
 - No evidence of CPV in either decay
 - Upper limit on the BR of $B_c^{\pm} \rightarrow K_s K^{\pm}$ decay (using 1 fb⁻¹@ $\sqrt{s} = 7$ TeV)

Conclusions (II)

- Measurement of direct CP asymmetries in $B^0 \rightarrow K^+\pi^-$ and $B_s \rightarrow \pi^+K^-$ decays using 1 fb⁻¹@ Vs = 7 TeV
 - World's best measurement of $A_{CP}(B^0 \rightarrow K^+\pi^-)$ with 10.5 σ significance
 - First observation of CP violation in B_s decays with 6.5 σ significance
- Measurement of time-dependent CP asymmetries of $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ using 1 fb⁻¹@ Vs = 7 TeV
 - No striking evidence of differences with respect to SM, but measurements performed with a fraction of the available luminosity
 - Room for improvements adding other 2 fb⁻¹ @ Vs = 8 TeV and same side taggers

Backup

The LHCb detector

The LHCb detector

