

The LHCb upgrade

LHCb THCp

- * Setting the scene
- Running conditions
- * Upgraded sub-systems

Julien Cogan on behalf of the LHCb collaboration CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

EPS-HEP 2013, Stockholm

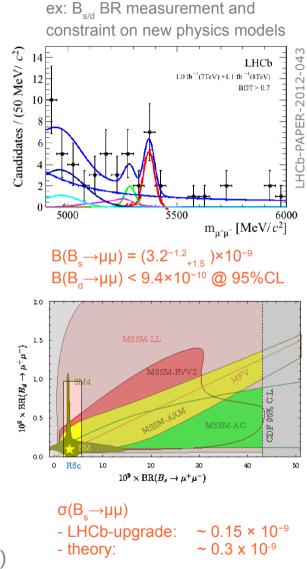
18-24 July 2013

LHCb physics goals

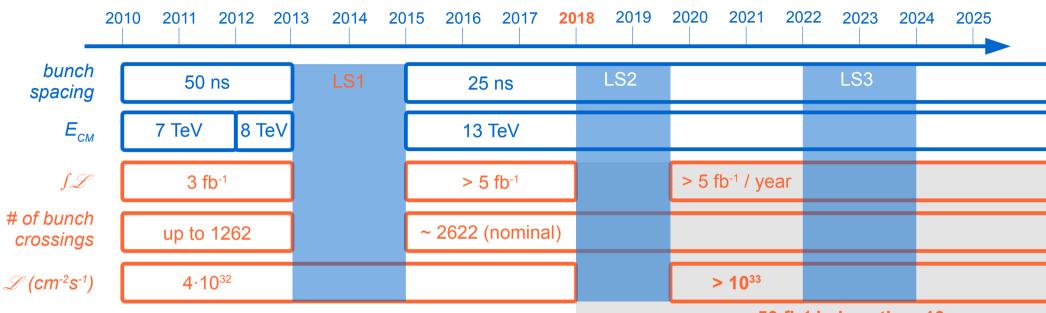
LHCb designed for flavour physics measurements :

- \rightarrow associated with many open questions of the SM
- # of generations hierarchy of masses CKM matrix
- → very sensitive to new physics effects :

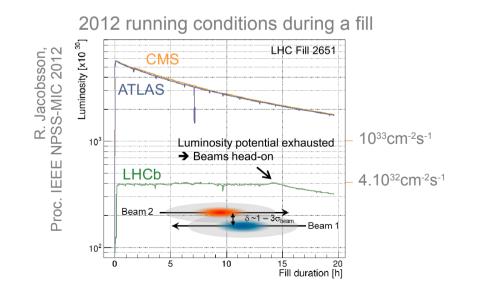
probe new states via virtual production in loop diagrams


- ⊔ LHCb phase 1 up to 2018 (8-10 fb⁻¹) :
 - → find or rule out "large" new physics effect

Yet, it is already clear that NP effects are small

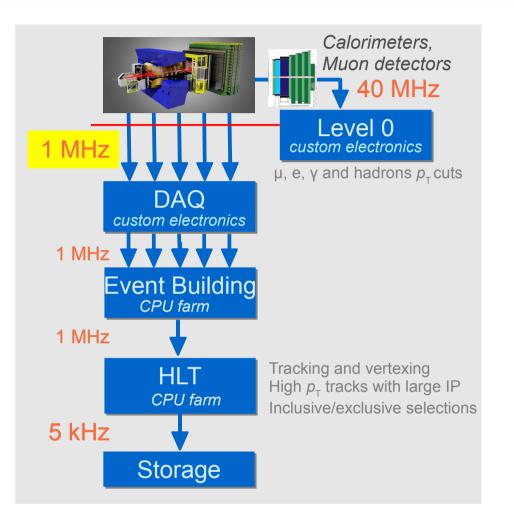

→ need to go deeper with more precise measurements need more statistic

↘ LHCb phase 2 (50 fb⁻¹): UPGRADE


- \rightarrow increased precision on quark flavour physics observables
- aim at experimental sensitivities comparable to theoretical uncertainties
- $\rightarrow\,$ enforce LHCb as a general purpose forward detector
- lepton flavour physics (lepton FV decay $\tau^- \rightarrow \mu^- \mu^+ \mu^-$)
- electroweak physics (sin² θ_{eff}^{lept} from measuring A_{FB} of leptons in Z decays)

LHC time-line & LHCb running plans

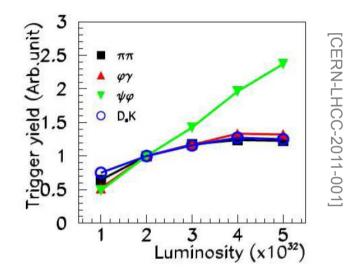
50 fb⁻¹ in less than 10 years LHCb upgrade


LHCb specificities

- → luminosity lower than ATLAS & CMS
- 4.10³² cm⁻²s⁻¹
- \rightarrow no luminosity decay during a fill

Upgrade

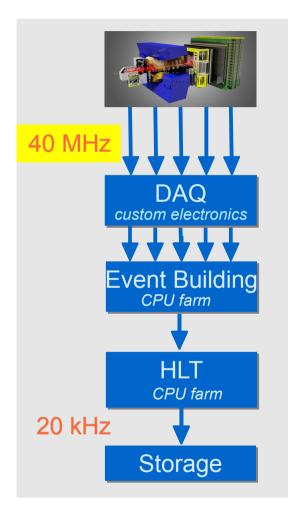
- → stable luminosity > **10**³³ cm⁻²s⁻¹
- ☑ What prevents us from running at higher luminosity already ?
 3


Current data acquisition and trigger limitations

Performances at 8 TeV in 2012 (L0xHLT)

- → B decays with µµ: ε ≈ 90 %
- → B decays with hadrons : $\epsilon \approx 30 \%$
- → Charm decays : $\epsilon \approx 10 \%$

Saturation of the Yields :



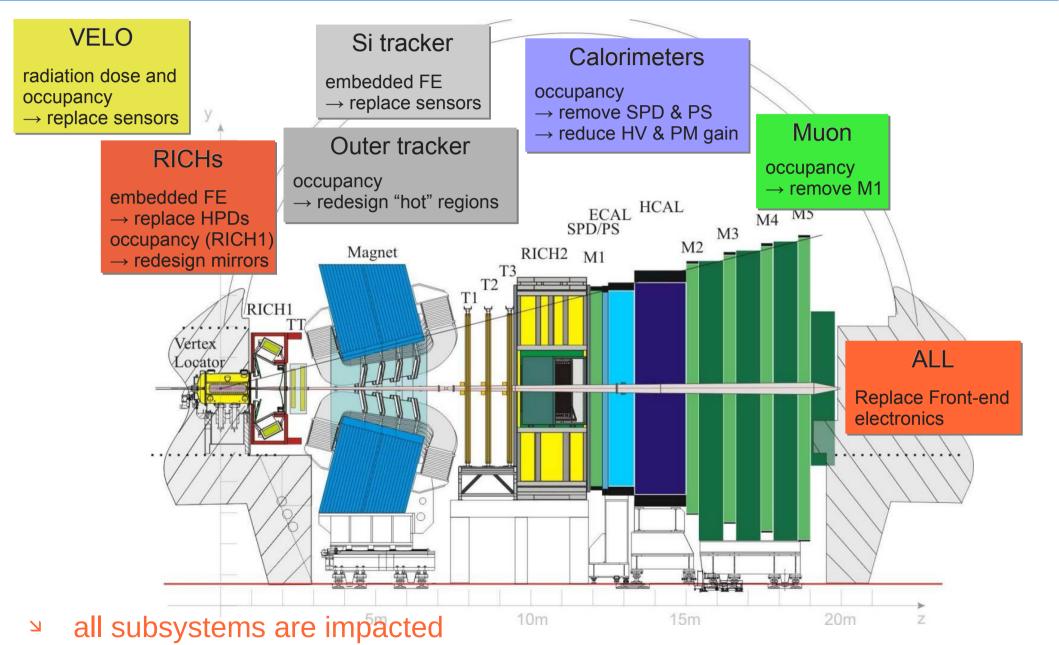
- → p_{T} cuts must be raised to cope with the 1 MHz read-out rate
- → no gain beyond 2-3 10³² cm⁻²s⁻¹ for hadronic modes

Solution >>> ■ To benefit from high luminosity :

- → remove L0 bottleneck
- → read-out full detector at 40 MHz
- → use fully software trigger

Upgrade strategy and consequence

Full detector readout at 40 MHz up to CPU farm


- → replacement of all front-end and back-end electronics
- detectors with embedded electronics need to be replaced
- → fast high-level software trigger

For sub-detectors which need to be replaced :

- → optimize geometry and granularity to allow fast full reconstruction
- → allow to increase instantaneous luminosity up to 2·10³³ cm⁻²s⁻¹
- → sustain increased radiation dose

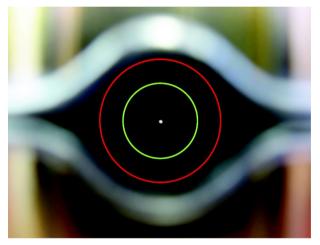
Final output bandwidth at ~20 kHz

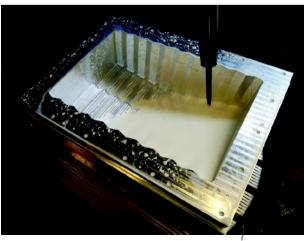
The 40 MHz detector

Upgrading the vertex locator (VELO)

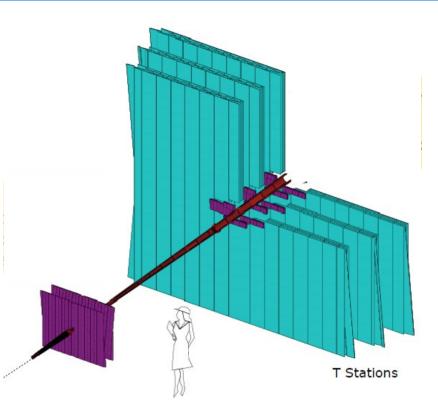
Current detector :

- → microstrip sensors (R, Φ)
- \rightarrow operated in vacuum with movables halves

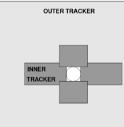

Upgrade challenge :

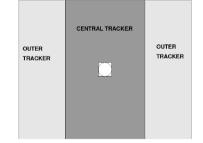

- → withstand increased radiation
- → high data volume
- → keep or improve current performance
 - lower materiel budget
 - enlarge acceptance

Technical choice :


- \rightarrow pixel sensors with micro channels CO₂ cooling
- \rightarrow replace RFoil between detector and beam vacuum :
 - thickness 300 μm \rightarrow 150 μm
- \rightarrow move closer to the beam :
 - inner aperture 5.5 mm $\,\rightarrow\,$ 3.5 mm

Upgrading the tracker

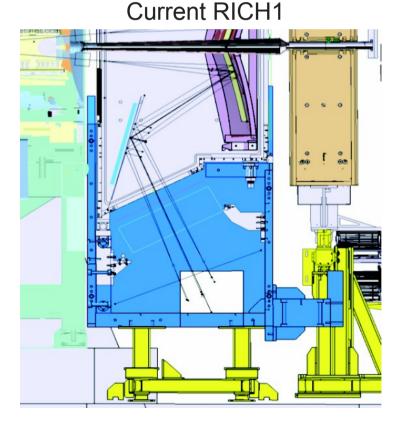



$TT \rightarrow UT$: replace all modules

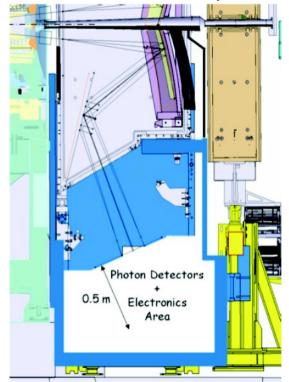
- → Si strip detector
- → Enlarge acceptance at high η
- → Improve granularity along y

OT occupancy too high in the inner regions 2 options under development :

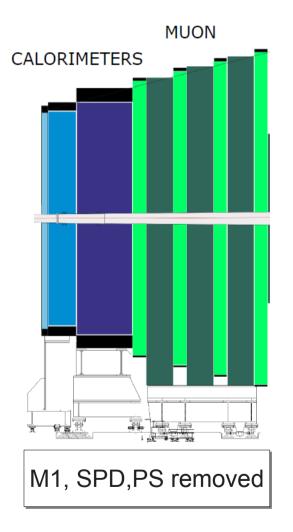
- Enlarged IT area : Si strips
 - → Si strips (IT) + straw tubes (OT)
 - increase IT acceptance to keep the OT occupancy below 20 %
- Central tracker (CT) : scintillating fibres
 - → 250 μm diameter, 2.5 m long fibres
 - degradation with radiation dose : OK
 - → 5 layers / module
 - → 5 m long modules
 - module flatness ?
 - → read-out by multi-channel SiPM outside the acceptance
 - neutron fluence :
 - OK (shielding + cooling -40°C)
- \square Decision on technology \rightarrow soon


Upgrading the RICHs

RICH1 occupancy to high :

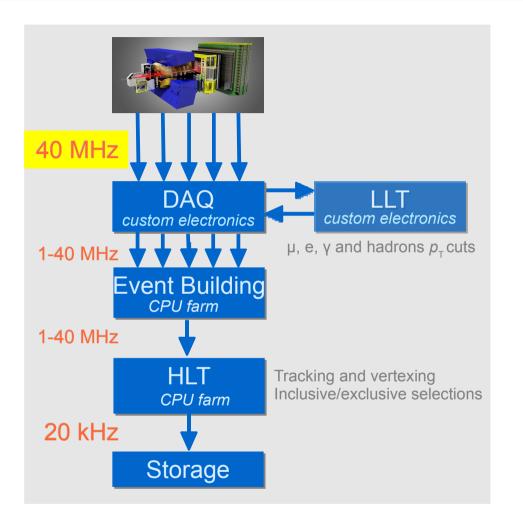

- → remove aerogel radiator
- CF_4 in RICH1 & C_4F_{10} in RICH2
- → optic redesign to spread out the rings

RICH1 and RICH2 :


- → replace photo-detector due to their embedded FE
- HPDs \rightarrow Multi-anode PMTs

RICH1 with new optics

Calorimeters and muon detectors


Calorimeters

- → Replacement of FE electronics
- → Keep current modules
- lower HV and PMT gain to reduce ageing

Muon

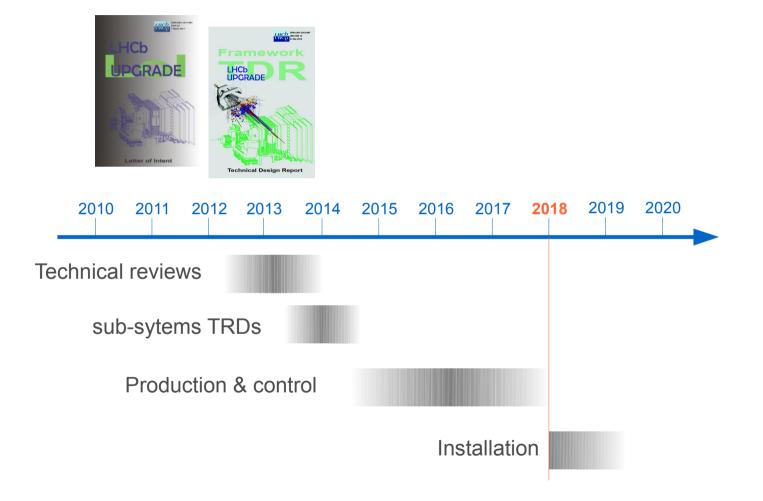
- → Replacement of FE electronics
- → Possible installation of higher granularity detectors at later stage

Upgrading the data acquisition and trigger

DAQ:

- → common read-out boards with different firmwares
- → exploring :
- merging read-out units and event builder in a single entity
- Ethernet / Infiniband / PCIe technologies
- use of co-processors like GPUs or FPGAs

Low Level Trigger (possibly) :


→ at early stage :

use of a Low Level Trigger to allow staging of the CPU farm capacity

HLT :

- → output rate limited to 20 kHz
- → full and fast reconstruction encouraging progress
- \square Decision on technology \rightarrow towards end of 2013

Upgrade roadmap

Conclusion

The LHCb upgrade has been fully approved by CERN

- LHCb will be upgraded in 2018 to start the phase 2 of its physics program
 - → high precision measurements will allow to understand better the flavour structure of the SM and possibly reveal new physics, e.g. :

 $\sigma(\gamma) \leq 1^{\circ}$; $\sigma(2\beta_{s}^{\text{eff}}(B_{s} \rightarrow \Phi \Phi)) \approx 0.003 \text{ rad}$; $\sigma(\Delta A_{CP}(D \rightarrow KK, \pi \pi)) \approx 1.2 \ 10^{-4}$

- The upgraded LHCb is based on a trigger-less readout running at 40 MHz
 - → full software trigger
- Extensive R&D program going on
 - \rightarrow new VELO and RICH technologies have been chosen
 - → technical choice for readout and fiber tracker to be taken towards the end of the year

Sensitivity of LHCb to key observables

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [10]	0.045	0.014	~ 0.01
	$A_{\mathrm{fs}}(B^0_s)$	$6.4 \times 10^{-3} [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	—	0.17	0.03	0.02
$\operatorname{penguin}$	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5~%	1~%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \mathrm{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6~%	2~%	7~%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV}^2/c^4)$	0.25 [15]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8~%	2.5%	$\sim 10 \%$
Higgs	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$	$1.5 \times 10^{-9} [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5 \%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 10-12^{\circ} [19, 20]$	4°	0.9°	negligible
$\operatorname{triangle}$	$\gamma \ (B^0_s \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_S^0)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	2.1×10^{-3} [5]	0.65×10^{-3}	0.12×10^{-3}	_

[Framework TDR for the LHCb Upgrade, CERN-LHCC-2012-007]