

HEP 2013 Stockholm 18-24 July 2013 (info@eps-hep2013.eu)

Studies of Asymmetries in Semileptonic B decays at LHCb

Thomas Ruf 💓

on behalf the LHCb collaboration

CP Asymmetry in B_s

LHCb-PAPER-2013-033 final 1fb⁻¹ result update of CONF-2012-022

Mixing in B_d and B_s

LHCb-PAPER-2013-036 New

The LHCb Experiment

✤ 912 members from 17 countries in 65 institutes

Single arm forward spectrometer

Excellent tracking and vertexing

impact parameter resolution ~20μm (high P_T)

Unique Hadron PID

Final Two Rich detectors π ,K,p ID up to 100 GeV/c

Muon and Calorimeter systems

 read-out at 40MHz. p_T of muon and E_T of hadron&γ input to first level trigger

High Level Trigger

- Input 1MHz, full software based, offline reconstruction tuned to trigger time constraints
- 29000 logical CPU cores

Dipole magnet

► ∫ Bdl = 4Tm, polarity (UP / DOWN) changed every ~100pb⁻¹

Neutral Meson Mixing

assuming CPT

$$\operatorname{R}\left(\begin{array}{cc} B \to B \\ \overline{B} \to \overline{B} \end{array}\right)(t) = \frac{1}{2} \qquad e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} + \cos\Delta mt\right)$$

ur:
$$\operatorname{R}\left(\begin{array}{c} B \to \overline{B} \\ \overline{B} \to B \end{array}\right)(t) = \frac{2}{|\Delta\Lambda|^2} \left(\begin{array}{c} |\Lambda_{12}|^2 \\ |\Lambda_{21}|^2 \end{array}\right) e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} - \cos\Delta mt\right)$$

- Obtained by solving the Schrödinger equation:
 - $\mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix} = \Lambda \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix}$ $\Lambda = \begin{pmatrix} M_{11} & M_{12}e^{i\varphi_M} \\ M_{12}e^{-i\varphi_M} & M_{22} \end{pmatrix} \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}e^{i\varphi_\Gamma} \\ \Gamma_{12}e^{-i\varphi_\Gamma} & \Gamma_{22} \end{pmatrix}$, \mathbf{B}_L and \mathbf{B}_H eigenstates of Λ
- Parameters desribing change of flavour:
 - Lifetime difference: $\Delta \Gamma = \Gamma_H \Gamma_L = 2\Gamma_{12} \cos(\varphi_{\Gamma} \varphi_M)$

$$for \frac{\Gamma_{12}}{M_{12}} \ll 1$$

- Oscillation frequency: $\Delta m = m_H m_L = 2M_{12}$
- **T violation:** $\mathbf{R}(\mathbf{B} \to \overline{\mathbf{B}}) \neq \mathbf{R}(\overline{\mathbf{B}} \to \mathbf{B}),$ flavour specific asymmetry: $\mathbf{A}_{fs} = \frac{|\Lambda_{12}|^2 - |\Lambda_{21}|^2}{|\Lambda_{12}|^2 + |\Lambda_{21}|^2} = \frac{\Gamma_{12}}{M_{12}} \sin(\varphi_{\Gamma} - \varphi_{M})$

Historical comment:

In the kaon system, A_{fs} , also called "Kabir Asymmetry" or A_T , first direct measurement of T-violation by CPLEAR *Phys.Lett. B* 444 (1998) 52

 $A_{fs}^{kaon} = (6.6 \pm 1.3 \pm 1.0) \times 10^{-3}$

Time evolution of flavo

Neutral Meson Mixing

assuming CPT

$$R\left(\frac{B}{\overline{B}} \rightarrow \frac{B}{\overline{B}}\right)(t) = \frac{1}{2} \qquad e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} + \cos\Delta mt\right)$$

ur:
$$R\left(\frac{B}{\overline{B}} \rightarrow \frac{B}{B}\right)(t) = \frac{2}{|\Delta\Lambda|^2} \left(\frac{|\Lambda_{12}|^2}{|\Lambda_{21}|^2}\right) e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} - \cos\Delta mt\right)$$

- Obtained by solving the Schrödinger equation:
 - $\mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix} = \Lambda \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix}$ $\Lambda = \begin{pmatrix} M_{11} & M_{12}e^{i\varphi_M} \\ M_{12}e^{-i\varphi_M} & M_{22} \end{pmatrix} \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}e^{i\varphi_\Gamma} \\ \Gamma_{12}e^{-i\varphi_\Gamma} & \Gamma_{22} \end{pmatrix}$, \mathbf{B}_L and \mathbf{B}_H eigenstates of Λ
- Parameters desribing change of flavour:
 - Lifetime difference: $\Delta \Gamma = \Gamma_H \Gamma_L = 2\Gamma_{12} \cos(\varphi_{\Gamma} \varphi_M)$

$$for \frac{\Gamma_{12}}{M_{12}} \ll 1$$

- Oscillation frequency: $\Delta m = m_H m_L = 2M_{12}$
- **T violation:** $\mathbf{R}(\mathbf{B} \to \overline{\mathbf{B}}) \neq \mathbf{R}(\overline{\mathbf{B}} \to \mathbf{B}),$ flavour specific asymmetry: $\mathbf{A}_{fs} = \frac{|\Lambda_{12}|^2 - |\Lambda_{21}|^2}{|\Lambda_{12}|^2 + |\Lambda_{21}|^2} = \frac{\Gamma_{12}}{M_{12}} \sin(\varphi_{\Gamma} - \varphi_{M})$
- In the SM, A_{fs} is small:

 $A_{fs}^{d} = (-4.1 \pm 0.6) \times 10^{-4}$ $A_{fs}^{s} = (1.9 \pm 0.3) \times 10^{-5}$ A.Lenz arXiv:1205.1444

$$A_{fs}^s \approx -A_{fs}^d \times \lambda^2, \, \lambda \approx 0.22$$

example for a leading order diagram:

Time evolution of flavo

Neutral Meson Mixing

assuming CPT

$$R\left(\frac{B}{\overline{B}} \to \frac{B}{\overline{B}}\right)(t) = \frac{1}{2} \qquad e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} + \cos\Delta mt\right)$$

ur:
$$R\left(\frac{B}{\overline{B}} \to \frac{B}{B}\right)(t) = \frac{2}{|\Delta\Lambda|^2} \begin{pmatrix} |\Lambda_{12}|^2 \\ |\Lambda_{21}|^2 \end{pmatrix} e^{-\overline{\Gamma}t}\left(\cosh\frac{\Delta\Gamma t}{2} - \cos\Delta mt\right)$$

Obtained by solving the Schrödinger equation:

• $\mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix} = \Lambda \begin{pmatrix} \mathbf{B}(t) \\ \overline{\mathbf{B}}(t) \end{pmatrix}$ $\Lambda = \begin{pmatrix} M_{11} & M_{12}e^{i\varphi_M} \\ M_{12}e^{-i\varphi_M} & M_{22} \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}e^{i\varphi_\Gamma} \\ \Gamma_{12}e^{-i\varphi_\Gamma} & \Gamma_{22} \end{pmatrix}$, \mathbf{B}_L and \mathbf{B}_H eigenstates of Λ

A.Lenz arXiv:1205.1444

- Parameters desribing change of flavour:
 - Lifetime difference: $\Delta \Gamma = \Gamma_H \Gamma_L = 2\Gamma_{12} \cos(\varphi_{\Gamma} \varphi_M)$

$$for \frac{\Gamma_{12}}{M_{12}} \ll 1$$

• Oscillation frequency: $\Delta m = m_H - m_L = 2M_{12}$

• **T** violation:
$$\mathbf{R}(\mathbf{B} \to \overline{\mathbf{B}}) \neq \mathbf{R}(\overline{\mathbf{B}} \to \mathbf{B}),$$

flavour specific asymmetry: $A_{fs} = \frac{|\Lambda_{12}|^2 - |\Lambda_{21}|^2}{|\Lambda_{12}|^2 + |\Lambda_{21}|^2} = \frac{\Gamma_{12}}{M_{12}} \sin(\varphi_{\Gamma} - \varphi_M)$

• In the SM, A_{fs} is small:

Time evolution of flavou

 $A_{fs}^d = (-4.1 \pm 0.6) \times 10^{-4}$ $A_{fs}^s = (1.9 \pm 0.3) \times 10^{-5}$

$$A_{fs}^s \approx -A_{fs}^d \times \lambda^2, \, \lambda \approx 0.22$$

New physics can enhance A_{fs}^d and A_{fs}^s up to 0.01

Interesting place to look for New Physics contributions.

A measurement of A_{fs} requires

Flavour tagging at decay time: most efficiently done using semileptonic decays, high BR, $\Delta b = \Delta Q$ rule

- Flavour tagging at production, expensive, $\epsilon D^2 \cong 3\%$ (LHCb)
 - \Rightarrow Use untagged semileptonic asymmetries:

• Time dependent:
$$\frac{R(B \to \mu^+ X_c)(t) - R(B \to \mu^- X_c)(t)}{R(B \to \mu^+ X_c)(t) + R(B \to \mu^- X_c)(t)} = \frac{A_{fs}}{2} + \left(A_P - \frac{A_{fs}}{2}\right) \left(\frac{\cos \Delta mt}{\cosh \Delta \Gamma t/2}\right)$$

- Loose factor 2 in sensitivity
- Dependence on production asymmetry $A_P = \frac{N(B_{t=0}) N(\overline{B}_{t=0})}{N(B_{t=0}) + N(\overline{B}_{t=0})} = O(1\%)$
- Lifetime reconstruction complicated by missing momentum
 - Time integrated: $\frac{N(B \to \mu^+ X_c) N(B \to \mu^- X_c)}{N(B \to \mu^+ X_c) + N(B \to \mu^- X_c)} = \frac{A_{fs}}{2} + (A_P \frac{A_{fs}}{2}) \left[1 + \left(\frac{\Delta m}{\overline{\Gamma}}\right)^2\right]^{-1} \mathcal{U}$
 - Gift: $\frac{\Delta m_s}{\overline{\Gamma}_s} \approx 26$: wipes out contribution from a B_s production asymmetry to <4x10⁻⁵, well below expected statistical sensitivity
- ▶ For *B_d*, will need time dependent analysis

A_P ×0.2%⁴

with LHCb acceptance

Experimental Considerations II

LHCb strategy

- Measure first A_{fs} for B_s using time integrated semileptonic asymmetry
- Develop time dependent analysis
 - Complication: Determine B lifetime with missing neutrino
 - Schallenge method by measuring Δm_s and Δm_d
- Measure A_{fs} for B_d using time dependent semileptonic asymmetry

Flavour specific final states are prone to detector induced charge asymmetries

- Different reconstruction efficiencies for particle and antiparticles due to different hadronic interactions with detector material
 - Controlled by using calibration channels
- Left/Right asymmetric detector efficiencies together with a dipole magnet
 - Mitigated by changing magnet polarities

LHCb Measurement of A_{fs}^s with $B_s^0 \to D_s^- \mu^+ X$

Signal Yields

PDF = double Gaussian with common mean for signal, 2nd order Chebyshev polynomial for background

Fitted raw yields

Total statistics: 184817 ± 484

	Magnet Up	Magnet Down
mass fitting		
$D_s^-\mu^+$	38742 ± 218	53768 ± 264
$D_s^+\mu^-$	38055 ± 223	54252 ± 259

Analysis Steps

Correct event yields for muon related asymmetries

- Due to PID and trigger
 - By use of calibration channels

Determine asymmetry caused by track reconstruction

- Due to different interactions of particle/anti-particle with detector and to magnet effects
 - By use of calibration channels

Determine asymmetry caused by background

- Prompt and B related
 - Determine from data

Muon Related Asymmetry

Calibration channel: $J/\psi \rightarrow \mu^+\mu^-$

- Two samples used
 - Events triggered by hadronic B decays not including J/ψ in the final state KS
 - Events triggered by single muon MS
- Tag&Probe
 - Tag = one good muon, probe = track not used in trigger and PID forming a good vertex with the tag and invariant mass close to J/ψ mass
 - Determine PID and trigger efficiencies of μ⁺ and μ⁻ in kinematic bins:

Efficiency ratio as

		-10 -10	bin 2 bin 4 -3 -1.5 0 1.5 3	10 Pr
	LHCb pre	liminary		
4^{c}_{μ} [%]	KS muon	correction	MS muon	correction
Magnet	$pp_x p_y$	$pp_t\phi$	pp_xp_y	$pp_t\phi$
Jp	$+0.38\pm0.38$	$+0.30\pm0.38$	$+0.64\pm0.37$	$+0.63\pm0.37$
Down	-0.17 ± 0.32	-0.25 ± 0.32	-0.60 ± 0.32	-0.62 ± 0.32
Avg.	$+0.11\pm0.25$	$+0.02\pm0.27$	$+0.02\pm0.24$	$+0.01\pm0.24$

For final result, use average of both samples and methods

Average

 $+0.49 \pm 0.38$

 -0.41 ± 0.32

 $+0.04 \pm 0.25$

LHCb ГНСр

Tracking Asymmetry

 $\boldsymbol{\mu}^{\pm}\boldsymbol{\pi}^{\mp}$:

 Use partially reconstructed decays: vertex and kinematic constraints determine momentum of the missing π⁺.
 Determine tracking efficiency ratio ε(π⁺)/ε(π⁻) as function of momentum:

Method used in an earlier measurement of the D_s production asymmetry:

R.Aaij et al PLB 713 (2012) 186

Kinematic weighting with signal: $A_{track}(\mu^{\pm}\pi^{\mp}) = (0.01 \pm 0.13)\%$

No asymmetry in pure $\Phi(1020) \rightarrow K^+K^-$

BUT, small s-wave contribution, K^+K^- momentum slightly differs. Kaon asymmetry determined from:

$$\frac{N(D^- \to K^+ \pi^- \pi^-)}{N(D^+ \to K^- \pi^+ \pi^+)} \times \frac{N(D^+ \to K^0_s \pi^+)}{N(D^- \to K^0_s \pi^-)} = \frac{\varepsilon(K^+ \pi^-)}{\varepsilon(K^- \pi^+)}$$

 $A_{track}(K^+K^-) = (0.012 \pm 0.004)\%$

Prompt D_s background estimated from 2-dim fit of In(IP/mm) vs. $M(K^+K^-\pi^+)$

 $A_{bkg}^{UP} = (+0.14 \pm 0.07)\%$ $A_{bkg}^{DOWN} = (-0.05 \pm 0.05)\% \implies A_{bkg} = (0.04 \pm 0.04)\%$

Backgrounds from B hadrons

 $D_s^+h^-X$ sample, $h = K/\pi$ identified with RICH, and folded with μ -misidentification probabilities from $D^* \to D^0(K\pi)\pi$ calibration sample

- False- μ and D_s from b-hadron decays: $A_{bkg} < 0.01\%$
- μ and D_s from b-hadron decays:

e.g. $\overline{B} \to D_s^+ \overline{D} X, \overline{D} \to \mu^- X$

 $A_{bkg} = (0.01 \pm 0.04)\%$

using measurements of branching fractions, b-hadron fractions, production asymmetries

Putting all together

Sources	$\sigma(A^s_{meas})[\%]$
Signal modeling and muon correction	0.07
Statistical uncertainty on the efficiency ratios	0.08
Background subtraction	0.05
Asymmetry in track reconstruction	0.13
Field-up and fileld-down different run conditions	0.01
Software trigger bias (topological trigger)	0.05
Total	0.18

 $A_{fs}^{s} = 2 \times A_{meas}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$

Systematic

uncertainties:

Comparison with other experiments

$$A_{fs}^s = (-0.06 \pm 0.50 \pm 0.36)\%$$

Most precise measurement
In agreement with SM prediction

See plenary talk of Stephanie Hansmann-Menzemer for comparison with other experiments

Towards Measuring A_{fs}^d

15

Mixing

- Use $B_{d,(s)} \rightarrow D_{(s)}^{-}[K^{+}K^{-}\pi^{-}]\mu^{+}\nu_{\mu}$ for flavour tagging at decay time, no requirement on m($K^{+}K^{-}$)
- Use opposite-side and same-side tagging at production time*
 - Mass distribution of tagged events: in total: ~600 000 candidates
 - ► $A_{\Delta m}$ diluted by mistag probability ω
 - $A_{\Delta m}^{exp} = (1 2\omega)A_{\Delta m}$
 - ω free fit parameter, 0.33-0.36
- * Eur. Phys. J. C72 (2012) 2022 LHCb-CONF-2012-033

LHCb ГНСр

Determining Decay Time

k-factor corrects in average for the missing momentum

Obtained from MC studies tuned to describe real data

• k-factor spread smaller for high $D_{(s)}^{-}\mu^{+}$ mass

- Average k-factor parametrized with 4^{th} order polynomial as function of $D_{(s)}^{-}\mu^{+}$ mass
- Decay time resolution becomes worse with decay time

Normalized $D_{(s)}^-\mu^+$ mass $n = \frac{M(D\mu) - M_D - M_\mu}{M_B - M_D - M_\mu}$

- Mixing asymmetry distorted by resolution folded with decay time acceptance and by background.
 - Taken care in the fit procedure

LHCb ГНСр

Result

Binned, multidimensional, log-likelihood fits of the like and opposite sign decay rates

Projection of the fitted PDF Around D_s mass peak

around D⁺ mass peak (20 MeV/c²)

p-value = 19.6%

No mixing rejected by 5.8 σ for B_s and 13 σ for B_d $\Delta m_d = (0.503 \pm 0.011_{stat} \pm 0.013_{sys})ps^{-1}$ $\Delta m_s = (17.93 \pm 0.22_{stat} \pm 0.15_{sys})ps^{-1}$ $\Delta m_s(PDG) = (0.507 \pm 0.004)ps^{-1}$ $\Delta m_s(PDG) = (17.69 \pm 0.08) ps^{-1}$

First observation of *B_s* mixing with semileptonic only decays

Summary

- A^s_{fs} final result with 1fb⁻¹
 - ► $A_{fs}^s = (-0.06 \pm 0.50 \pm 0.36)\%$

LHCb preliminary

- Most precise measurement until now
- Result is consistent with the SM prediction of ~0
- First measurement of Δm_s with only semileptonic decays
 - $\Delta m_s = (17.93 \pm 0.22_{stat} \pm 0.15_{sys})ps^{-1}$

LHCb preliminary

- $\Delta m_d = (0.503 \pm 0.011_{stat} \pm 0.013_{sys})ps^{-1}$
- On the right track to measure A_{fs}^d

Significant increase of precision in the coming years

- 3fb⁻¹ on tape from Run I
 - Using Cabibbo favored decays, $B_d \rightarrow D^-[K^-\pi^+\pi^-]\mu^+\nu_\mu$, expect $\sigma_{stat}(A^d_{fs}) < 0.1\%$
- 2015: Increase of beam energy, ~2x more b production cross section
- ► After 2018: LHCb upgrade, aim for 50fb⁻¹ with increased trigger efficiency

Muon Corrected Asymmetry

L

Mixing Result, systematic errors

Systematic errors

Source of uncertainty	Method	Systematic uncertainty	
		$\Delta m_s \; [\mathrm{ps}^{-1}]$	$\Delta m_d \; [\mathrm{ps}^{-1}]$
k-factor	simulation	0.06	0.0052
detector alignment	calibration	0.03	0.0008
values of $\Delta\Gamma$	data refit	n/a	0.0004
model bias	simulation	0.09	0.0055
signal proper-time model	data refit	0.09	0.007
other models and binning	data refit	0.05	0.001
B^+ (\mathcal{B} , efficiency, tagging)	data refit	n/a	0.008
total	sum in quadrature	0.15	0.013

No mixing rejected by 5.8 σ for B_s and 13 σ for B_d

- $\Delta m_d = (0.503 \pm 0.011_{stat} \pm 0.013_{sys})ps^{-1} \Delta m_d(PDG) = (0.507 \pm 0.004)ps^{-1} \Delta m_s (PDG) = (17.69 \pm 0.08) ps^{-1}$
- **First observation of B**_s mixing with only semileptonic decays