Studies of *b* hadrons decays into final states containing charmonia

Victor Egorychev ITEP, Moscow

EPSHEP 2013 18-24 July Stockholm

Event selection

Detached vertex analysis: \checkmark start from good quality tracks \checkmark apply particle ID (μ,π,K,p) \checkmark vertex quality cuts \checkmark PV and SV separation: P PV P

- daughter particles do not point to PV (>3 σ)
- mother particle does point to PV ($<3\sigma$)
- mother has non-zero lifetime
- the decay structure is self-consistent

Take care about background and keep track on efficiency determination

- use *sPlot* technique for background subtraction
- extract efficiencies from data (when possible)

 μ^+

B decays to charmonium and neutrals

B meson decays containing charmonium in final state play a crucial role in *CP* violation study and in precise measurement of neutral *B* meson mixing parameter

- sensitive for electroweak transition study
- direct probe of charmonium properties
- possible future measurement of B_s mixing phase ϕ_s in $B_s \rightarrow \psi(2S) f_0(980)$
- possible channel for *CP*-asymmetry measurements in $B_s \rightarrow J/\psi\eta$ or $B_s \rightarrow \psi(2S)\eta$

see also talk

Measurement of ϕ_s at LHCb

Wandernoth, Sebastian

Evidence for $B^0 \rightarrow J/\psi \omega$ Nucl Phys B867 (2013)

 \mathcal{BR} (B⁰ \rightarrow J/ $\psi\omega$) < 2.4 x 10⁻⁴ (90% CL), CLEO II, PL B369 (1996) 186

LHCb :

+0.19 $\mathcal{BR} (B^0 \rightarrow J/\psi \omega) = (2.41 \pm 0.52 \text{ (stat)} - 0.35 \text{ (syst)} \pm 0.36 \mathcal{BR} (B^0 \rightarrow J/\psi \rho^0(770)) \times 10^{-5}$

LHCb,

Observation of $B^0_s \rightarrow \psi(2S)\eta$

 $\frac{\mathcal{BR} (B^0_s \rightarrow \psi(2S)\eta)}{\mathcal{BR} (B^0_s \rightarrow J/\psi \eta)} = 0.83 \pm 0.14(\text{stat}) \pm 0.12(\text{syst}) \pm 0.02(\mathcal{BR}(\psi \rightarrow \mu^+\mu^-))$ $\frac{\text{LHCb,}}{\text{Nucl Phys B871 (2013)}}$ $\frac{1}{403}$

Search for $B^{0}_{(d,s)} \rightarrow \chi_{c1,2} K^{*0}(\phi)$

Decays are expected to proceed predominantly via the color-suppressed tree diagram

Factorization hypothesis $\Rightarrow \mathcal{BR}(B_d \rightarrow \chi_{c0,2} K^{*0})$ or $\mathcal{BR}(B_s \rightarrow \chi_{c0,2} \phi)$ are expected to be small (arXiv:hep-ex/0607221)

Experimental results

 $\mathcal{BR}(B_d \to \chi_{c0} K^{*0}) = (1.7 \pm 0.3(\text{stat}) \pm 0.2(\text{syst})) \times 10^{-4}$ $\mathcal{BR}(B_d \to \chi_{c1} K^{*0}) = (2.5 \pm 0.2(\text{stat}) \pm 0.2(\text{syst})) \times 10^{-4}$

$$\mathcal{BR}(B_d \rightarrow \chi_{c1} K^{*0}) = (1.73 + 0.15 + 0.12) + 0.34 + 0.34 + 0.22 + 0.22 + 0.12 + 0.22$$

 $\mathcal{BR}(B_d \rightarrow \chi_{c2} K^{*0}) = (6.6 \pm 1.8(\text{stat}) \pm 0.5(\text{syst})) \times 10^{-5}$

BaBar, PR D78 (2008) 0911001 BaBar, PRL 102 (2009) 132001

Belle, PR D78 (2008) 072004

BaBar, PRL 102 (2009) 132001

7

= $(17.1 \pm 5.0(\text{stat}) \pm 1.7(\text{syst}) \pm 1.1 (\mathcal{BR}(\chi_{c1.2} \rightarrow J/\psi\gamma)) \times 10^{-2}$

 \mathcal{BR} (B⁰ $\rightarrow \chi_{c2}$ K^{*0})

 $\mathcal{BR}(B^0 \rightarrow \chi_{c1} K^{*0})$

8

precise

LHCb :

 $\frac{\mathcal{BR}(\dot{B}_{s}^{0} \rightarrow \chi_{c1} \phi)}{\mathcal{BR}(B_{s}^{0} \rightarrow J/\psi \phi)} = (18.9 \pm 1.8 \text{ (stat)} \pm 1.3 \text{ (syst)} \pm 0.8 (\mathcal{BR}(\chi_{c1} \rightarrow J/\psi\gamma)) \times 10^{-2}$

J^{PC} of X(3872) determination in B+ decay

X(3872) discovered by Belle almost 10 years ago, but its nature still not clear

✓ C-parity is positive since $X(3872) \rightarrow J/\psi\gamma$ observed

✓ CDF: excluded all but cannot distinguish between 1⁺⁺ and 2⁻⁺ PRL98 (2007) 132002

✓ BaBar: the observed mass distribution of ω in $X(3872) \rightarrow J/\psi\omega$ ($\omega \rightarrow \pi^+ \pi \pi^0$) favored 2⁻⁺ (CL=68%), but not ruled out 1⁺⁺ (CL=7%) PRD82 (2010) 011101

✓ Belle: 1D analysis on polarized X(3872) could not distinguish between 1⁺⁺ and 2⁻⁺ PRD84 (2011) 052004

Determination of quantum numbers is crucial for theoretical interpretation of this state

✓ 1⁺⁺: molecule? tetra-quarks? $\chi_{c1}(2^{3}P_{1})$? ✓ 2⁻⁺ : $\eta_{c2}(1^{1}D_{2})$?

J^{PC} of X(3872) determination Likelihood-ratio test to discriminate

Angular analysis of $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow J/\psi \pi + \pi$ The angular correlation in the B⁺ decay carry information about J^{PC} of the X(3872)

between 1⁺⁺ and 2⁻⁺ hypotheses

 $t = -2 \ln[\mathcal{L}(2^{-+})/\mathcal{L}(1^{--})]$ t > 0 implies 1^{++} t < 0 implies 2^{-+}

B decays to charmonium and dibaryons

The study of such *B* decays has not been extensively explored mainly due to the suppressed branching fractions of typically $O(<10^{-5})$

Dibaryon production in *B* meson decays has been studied in decays $B^+ \to K^+ p \,\bar{p}$ or $B^0 \to \bar{D}^0 p \bar{p}$

Branching fraction is ~10% that of the corresponding decay with $P\bar{P}$ replaced by $\pi^+\pi^-$

In contrast

$$\mathcal{BR}(B_d \to J/\psi \pi^+ \pi) = (4.6 \pm 0.9) \times 10^{-5}$$

$$\mathcal{BR}(B_d \to J/\psi p\bar{p}) < 8.3 \times 10^{-7} (90\% \text{ C.L.})$$
 ~50 times low

Angular analysis of $B_d \rightarrow J/\psi K^{*0}(872)$

- $P \rightarrow VV$
- Angular acceptance from MC
- $K\pi$ final state can be decomposed in terms:

✓ P-wave amplitudes:

- A₀ (longitudinal), A_{\parallel} (transverse-parallel), A_{\perp} (transverse-perpendicular) \checkmark S-wave amplitude:
 - A_s (non-resonant $K\pi$ system)
- \checkmark strong phases of 4 amplitudes are denotes δ_0 , $\delta_{\parallel},\,\delta_{\perp},\,\delta_s$
- ✓ parity: even for (A_0 , A_{\parallel}); odd for (A_{\perp} , A_s)

Individual polarization amplitudes $(A_0, A_{\parallel}, A_{\perp}, A_s)$ is analyzed in terms of the 3 transversity angles $(\cos\theta, \phi, \cos\psi)$

Angular analysis of $B_d \rightarrow J/\psi K^{*0}(872)$

Conclusions

First evidence for $B_d \rightarrow J/\psi \omega$

 \checkmark measured relative branching ratio w.r.t $B_d \rightarrow J/\psi \rho 0(770)$

First observation of $B_s \rightarrow \chi_{c1} \phi$

 \checkmark measured relative branching ratios w.r.t J/ψ channels

 J^{PC} of X(3872) determination

✓ based on angular correlations in $B^+ \rightarrow X(3872) K^+$

First upper limits on $B_s \rightarrow J/\psi pp$ and $B^+ \rightarrow J/\psi pp \pi^+$

✓ measured w.r.t $B_s \rightarrow J/\psi \pi^+ \pi$

Measurement of the *P*-wave polarization amplitudes in $B_s \rightarrow J/\psi K^{*0}(892)$

More results in

Measurement of ϕ_s at LHCb Wandernoth, Sebastian

Measurements of b hadron lifetimes and effective lifetimes at LHCb Eklund, Lars

Studies of the properties and decays of the Bc meson at LHCb Tuning, Niels

Observation of $B^{0}_{(d,s)} \rightarrow \psi(2S)\pi^{+}\pi^{-}$

 $\frac{\mathcal{BR} (B^{0} \to J/\psi \ \pi^{+}\pi^{-})}{\mathcal{BR} (B^{0}_{s} \to \psi(2S)\pi^{+}\pi^{-})} = 0.34 \pm 0.04(\text{stat}) \pm 0.03(\text{syst}) \pm 0.01 (\text{BR}(\psi \to \mu^{+}\mu^{-})))$

B decays to J/ψ or $\psi(2S)$ states

$\Lambda_b \rightarrow J/\psi \Lambda$ decay amplitudes

For Λ_b baryons originating from energetic *b*-quarks, heavy-quark effective theory predicts:

large fraction of the transverse *b*-quark polarization to be retained after hadronisation
longitudinal polarization should vanish due to parity conservation in strong interactions

-0.2

-0.3

-0.4

° HERA-B

+ NA48

× E799

-0.2

Measured in $e^+e^- \rightarrow Z^0 \rightarrow bb$ transition (at LEP), but not yet at any hadron machine

Hints from hadron machine:

- baryon polarization strongly depends on x_F
- vanishes at $x_F \sim 0$ (Λ^0)

But with very small $x_F \sim 0.02$ for Λ_b baryons at LHC polarization could be much smaller than 10%

0.6

 $x_F = \frac{2p_L}{\sqrt{2}}$

0.4

0.2

PLB 614 (2005) 165

$\Lambda_b \rightarrow J/\psi \Lambda$ decay amplitudes

Functions used to describe the angular analysis

i	$f_i(\alpha_b,r_0,r_1)$	$g_i(P_b, \alpha_A)$	$h_i(\cos\theta,\cos\theta_1,\cos\theta_2)$
0	1	1	1
1	$lpha_b$	P_b	$\cos heta$
2	$2r_1 - \alpha_b$	α_A	$\cos \theta_1$
3	$2r_0 - 1$	$P_b \alpha_A$	$\cos\theta\cos\theta_1$
4	$\frac{1}{2}(1-3r_0)$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
5	$\frac{1}{2}(\alpha_b - 3r_1)$	P_b	$\frac{1}{2}(3\cos^2\theta_2-1)\cos\theta$
6	$-\frac{1}{2}(\alpha_b + r_1)$	α_A	$\frac{1}{2}(3\cos^2\theta_2-1)\cos\theta_1$
$\overline{7}$	$-\frac{1}{2}(1+r_0)$	$P_b \alpha_A$	$\frac{1}{2}(3\cos^2\theta_2-1)\cos\theta\cos\theta_1$

The angular distribution depends on:

✓ transverse polarization parameter P_b ✓ $\Lambda \rightarrow p\pi$ decay asymmetry parameter α_b ✓ 4 helicity amplitudes $\mathcal{M}_{+\frac{1}{2},0}$ $\mathcal{M}_{-\frac{1}{2},-1}$ $\mathcal{M}_{+\frac{1}{2},-1}$ $\mathcal{M}_{+\frac{1}{2},+1}$

✓ 5 angles $(\theta, \theta_1, \theta_2, \phi_1, \phi_2)$

Amplitudes parameterization:

 $\begin{aligned} \mathbf{r}_{0} &= |\mathcal{M}_{+ \frac{1}{2},0}|^{2} + |\mathcal{M}_{-\frac{1}{2},0}|^{2} \\ \mathbf{r}_{I} &= |\mathcal{M}_{+ \frac{1}{2},0}|^{2} - |\mathcal{M}_{-\frac{1}{2},0}|^{2} \\ \alpha_{b} &= \mathbf{r}_{I} + |\mathcal{M}_{-\frac{1}{2},-1}|^{2} - |\mathcal{M}_{+\frac{1}{2},+1}|^{2} \\ \end{aligned}$ Parity violation asymmetry

parameter of $\Lambda_b \rightarrow J/\psi \Lambda$

Four parameters: P_b , α_b , r_0 and r_1 have to be measured simultaneously from the angular analysis²¹

First measurement of the Λ_b polarization P_b in pp collisions and parity-violation asymmetry parameter α_b

LHCb: $P_b = 0.06 \pm 0.07 \pm 0.02,$ $\alpha_b = 0.05 \pm 0.17 \pm 0.07,$ $r_0 = 0.58 \pm 0.02 \pm 0.01,$ $r_1 = 0.56 \pm 0.10 \pm 0.05$ Polarization parameter P_b :

✓ cannot exclude order of 10% transverse polarization

 \checkmark but **disfavors** 20% at the level of 2.7 σ

Parity-violation parameter

✓ compatible with predictions ranging -21% to $_{22}^{-10\%}$ ✓ but rejects HQET prediction 77.7% at 6.1 σ